摘要
针对网络入侵检测性能不高的问题,提出一种基于空时特征融合和注意力机制的深度学习入侵检测模型CTA-net。该模型通过集成卷积神经网络(CNN)和长短时记忆网络(LSTM)获取空时融合特征,然后使用注意力模块(Attention)对输入的空时融合特征进行重要性加权计算,最后通过softmax函数进行分类。使用NSL-KDD数据集的实验结果表明,相比具有相似结构的CNN模型和空时融合的CNN-LSTM模型,在训练集的收敛性具有显著的提升,在测试集上使用的分类评价指标准确率分别提升10.9120个百分点和11.8740个百分点,精确率分别提升9.1950个百分点和9.6130个百分点,召回率分别提升9.1780个百分点和9.9340个百分点,F1-SCORE分别提升10.7830个百分点和11.7500个百分点。仿真结果表明,所提出的CTA-net模型在网络入侵检测方面具有较好的应用潜力。
Aiming at the problem of low network intrusion detection performance,a deep learning intrusion detection model CTAnet based on space-time feature fusion and attention mechanism is proposed.The model obtains space-time fusion features by integrating convolutional neural network( CNN) and long-short-term memory network( LSTM),and then uses the attention module( Attention) to calculate the importance of the input space-time fusion features,and finally passes the softmax function sort.Using the NSL-KDD data set,the experimental results show that compared with the CNN model with similar structure and the space-time fusion CNN-LSTM model,the convergence of the training set is significantly improved,and the accurate of classification evaluation index used on the test set has increased by 10.9120 percentage points and 11.8740 percentage points,the precision has increased by 9.1950 percentage points and 9.6130 percentage points,the recall has increased by 9.1780 percentage points and9.9340 percentage points,and F1-SCORE has increased by 10.7830 percentage points and 11.750 percentage points.The simulation results show that the proposed CTA-net model has good application potential in network intrusion detection.
作者
饶海兵
朱苏磊
杨春夏
RAO Hai-bing;ZHU Su-lei;YANG Chun-xia(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China)
出处
《计算机与现代化》
2022年第6期116-121,共6页
Computer and Modernization
基金
国家自然科学基金资助项目(61801293)。