摘要
Utilizing photothermal hydrogels as a wound dressing is a promising strategy to accelerate wound healing.Usually,a photothermal hydrogel has a strong light-absorbing capability,and hence its transparency can be largely sacrificed,which is unbeneficial for the visual monitoring of wound states.It remains challenging to balance the trade-off between the photothermal conversion and wound visualization for the photothermal hydrogel dressing.Herein,a composite photothermal hydrogel film with high transparency is presented for the visual monitor of the wound,which is constructed by incorporating CsxW03 nanorods into the networks of polyacrylamide hydrogels.The composite photothermal hydrogel film exhibits high light absorption in the near-infrared region and high transmittance in the visible light region.Under 980 nm laser irradiation,the composite hydrogel can be heated up to 45°C.In vivo animal experiment on mouse skin wound model shows that the composite hydrogel film can locally heat the skin wound to accelerate healing while maintaining more than 70%transparency to realize real-time observation of the wound.This study provides the first attempt to solve the problem of opacity in photothermal hydrogel dressings,promoting the possibility of its clinical applications.
基金
The authors are thankful to the HUST Analytical and Testing Center for their help with the facilities.We thank the funding support from the National Natural Science Foundation of China(Grant No.52022032).