期刊文献+

一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程

On a Semilinear Wave Equation with Kirchhoff-type Weak Damping Terms and Logarithmic Nonlinearity
下载PDF
导出
摘要 本文研究一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程齐次Dirichlet初边值问题解的适定性及定性性质.借助于正则解的适定性并结合稠密性理论导出局部弱解的适定性,且利用修正能量泛函技巧,建立当p <γ时整体适定性.同时,利用反证技巧,证明当p>γ时解的有限时刻爆破现象. Under homogeneous Dirichlet conditions,the well-posedness and qualitative properties for a semilinear wave equation with Kirchhoff-type weak damping terms and logarithmic nonlinearity were considered.By improving the well-posedness for regular solution and density argument,a local existence of weak solutions was proved.Meanwhile,based on modified energy technique and contradiction argument,a global existence with p <γ and the finite time blow-up with p> γ were also established.
作者 杨怡 方钟波 YANG Yi;FANG Zhongbo(School of Mathematical Sciences,Ocean University of China,Qingdao 266100,China)
出处 《应用数学》 CSCD 北大核心 2022年第3期511-523,共13页 Mathematica Applicata
基金 山东省自然科学基金面上项目(ZR2019MA072) 中央高校基本科研基金(201964008)。
关键词 半线性波动方程 基尔霍夫型弱阻尼 对数非线性 整体适定性 爆破 Semilinear wave equation Kirchhoff-type weak damping Logarithmic nonlinearity Global existence Blow-up
  • 相关文献

参考文献1

二级参考文献16

  • 1Bialynicki-Birula I., Mycielski J., Wave equations with logarithmic nonlinearities. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23(4) (1975), 461-466.
  • 2Bartkowski K., Gorka P., One-dimensional Klein-Gordon equation with logarithmic nonlinearities. J Phys. A, 41(35) (2008), 355201,11 pp.
  • 3Gorka P., Logarithmic Klein-Gordon equation. Acta Phys. Polon. B, 40(1) (2009), 59-66.
  • 4Bialynicki-Birula I., Mycielski J., Nonlinear wave mechanics. Ann. Physics, 100(1-2) (1976), 62-93.
  • 5Hiramatsu T., Kawasaki M. and Takahashi F., Numerical study of Q-ball formation in gravity mediation. Journal of Cosmology and Astroparticle Physics, 2010(6) (2010), 001-008.
  • 6Cazenave T., Haraux A., Equations d'evolution avec non-linearite logarithmique. Ann. Fac. Sci. Toulouse Math., 2(1) (1980), 21-51.
  • 7Han X. S., Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics. Bull. Korean Math. Soc., 50(1) (2013), 275-283.
  • 8Levine H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the form. Trans. Amer. Math. Soc., 192 (1974), 1-21.
  • 9Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source term. ]. Differential Equations, 109 (1994), 295-308.
  • 10Nakao M., Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Annalen, 305(1996), 403-407.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部