期刊文献+

线性半向量二层规划问题的割平面方法 被引量:1

A Cutting Plane Method for the Linear Semivectorial Bilevel Programming Problem
下载PDF
导出
摘要 本文研究线性半向量二层规划问题的割平面方法.首先基于线性多目标规划的加权标量化方法以及下层问题的K-K-T最优性条件,将线性半向量二层规划问题转化为相应的单层规划问题;然后通过分析所构造单层规划问题最优解的特征,同时基于割平面思想,设计一种求解线性半向量二层规划问题全局最优解的算法;最后,利用算例验证所设计割平面算法的可行、有效性. In this paper,a cutting plane approach for the linear semivectorial bilevel programming problem is proposed.Firstly,based on the weight method for the linear multiobjective programming and the K-K-T optimality conditions of the lower level problem,we transform the linear semivectorial bilevel programming into the corresponding single level programming problem.Then,based on exploring the characters of the optimal solutions of the single level programming problem and the cutting planes method,we propose a cutting plane algorithm for the global optimal solution of the linear semivectorial bilevel programming problem.Finally,we present some numerical results to illustrate the algorithm.
作者 袁梓翠 吕一兵 万仲平 YUAN Zicui;LV Yibing;WAN Zhongping(School of Information and Mathematics,Yangtze University,Jingzhou 434023,China;School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)
出处 《应用数学》 CSCD 北大核心 2022年第3期716-721,共6页 Mathematica Applicata
基金 国家自然科学基金(11771058,11871383) 湖北省杰出青年基金(2019CFA088)。
关键词 线性半向量二层规划 加权标量化 最优性条件 割平面 全局最优解 Linear semivectorial bilevel programming Weighted scalarization Optimality condition Cutting plane Global optimal solution
  • 相关文献

参考文献4

二级参考文献46

  • 1王广民,万仲平,王先甲.二(双)层规划综述[J].数学进展,2007,36(5):513-529. 被引量:69
  • 2孙静春;周晓玲;李怀祖. 带有净收益约束的DEA方法[J] . Journal of Systems Science and Information, 1999, 19(5): 18-23.
  • 3Yang H, Zhang X N, Meng Q. Stackelberg games and multiple equilibrium behaviors on networks[J] . Transportation Research Part B: Methodological, 2007, 41(8): 841-861.
  • 4Gil H A, Galiana F D, Da Silva E L. Nodal price control: A mechanism for transmission network cost allocation[J] . IEEE Transactions on Power Systems, 2006, 21(1): 3-10.
  • 5Yao Z, Stephen C H, Lai K K. Manufacturer's revenue-sharing contract and retail competition[J] . European Journal of Operational Research, 2008, 186(2): 637-651.
  • 6Ben-Ayed O, Boyce D E, Blair C E. A general bilevel linear programming formulation of the network design problem[J] . Transportation Research Part B: Methodological, 1988, 22(4): 311-318.
  • 7Bonnel H, Morgan J. Semivectorial bilevel optimization problem: Penalty approach[J] . Journal of Optimization Theory and Applications, 2006, 131(3): 365-382.
  • 8Ankhili Z, Mansouri A. An exact penalty on bilevel programs with linear vector optimization lower level[J] . European Journal of Operational research, 2009, 197(1): 36-41.
  • 9Zheng Y, Wan Z P. A solution method for semivectorial bilevel programming problem via penalty method[J] . Journal of Applied Mathematics and Computing, 2011, 37(1-2): 207-219.
  • 10Dempe S, Gadhi N, Zemkoho A B. New optimality conditions for the semivectorial bilevel optimization problem[J] . Journal of Optimization Theory and Application, 2013, 157(1): 54-74.

共引文献5

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部