期刊文献+

面向水声传感网的自主水下航行器辅助定位动态路径规划 被引量:3

Dynamic Path Planning for Autonomous Underwater Vehicle Assisted Localization of Underwater Acoustic Aensor Networks
下载PDF
导出
摘要 水声传感器网络(UASNs)节点由于洋流等因素长时间作用会出现位置偏移,故需要修正其位置信息。在水声传感器网络节点定位中将自主式水下潜器(AUV)作为移动锚点辅助定位可有效降低定位成本,但在AUV辅助定位过程中AUV的能量利用率仍有待提升。为了进一步提高AUV的能量利用率,该文提出一种面向水声传感网的AUV辅助定位动态路径规划方法。该方法中将节点位置修正过程看成节点位置信息熵减少的过程。在AUV动态路径规划时根据定位过程的节点位置信息和预计AUV能耗,规划AUV下一步移动目标位置。使用贪婪算法选取使信息增益期望和移动消耗能量比值最大的位置作为AUV下一步移动目标位置。仿真结果表明,该算法能够在保证节点定位精度的基础上有效提高AUV能量利用率。 Due to various effects,such as ocean currents,locations of sensor nodes have to be updated in Underwater Acoustic Sensors Networks(UASNs).In UASNs localization,using an Autonomous Underwater Vehicle(AUV)as the mobile anchor can reduce the localization cost.However,the energy utilization of AUV is not efficient.In order to improve the energy utilization of AUV,a dynamic path planning method is proposed for an AUV-aided localization for UASNs.In this method,the location correction process is regarded as a process of reducing the entropy of location information of sensor nodes.In dynamic path planning,the next target location of the AUV is planned according to the sensor node location information and the expected AUV energy consumption.The greedy algorithm is used to select the location that can obtain the maximum ratio of the expectation of the information gain and mobile energy consumption as the target location.The simulation show that the proposed algorithm can improve the energy efficiency while ensuring the positioning accuracy.
作者 黄沛烁 王易因 关新平 黄梦醒 HUANG Peishuo;WANG Yiyin;GUAN Xinping;HUANG Mengxing(School of Information and Communication Engineering,Hainan University,Haikou 570228,China;Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China;Key Laboratory of System Control and Information Processing,Ministry of Education of China,Shanghai 200240,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2022年第6期1927-1936,共10页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61773264,61633017) 上海交通大学深蓝计划(SL2020MS011,SL2020MS015)。
关键词 水声传感器网络 自主式水下潜器辅助定位 路径规划 信息熵 能量利用率 Underwater Acoustic Sensor Networks(UASNs) Autonomous Underwater Vehicle(AUV)assisted localization Path planning Information entropy Energy utilization
  • 相关文献

参考文献2

二级参考文献16

  • 1Sichitiu M L and Ramadurai V. Localization of wireless sensor networks with a mobile beacon. Proc. of the IEEE Int'l Conf. on Mobile Ad-hoc and Sensor Systems. Fort Lauderdale Florida, USA, October 24-27, 2004: 174-183.
  • 2Ssu K F, Ou C H, and Jiau H C. Loculizution with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 2005, 54(3): 1187-1197.
  • 3Xia Zhen-jie and Chen Chang-jia. A localization scheme with mobile beacon for wireless sensor networks. Proc. of 6th International Conference on ITS Telecommunications. Chengdu, China, June 21-23, 2006: 1017-1020.
  • 4Kim Kyunghwi and Lee Wonjun. MBAL: A mobile beacon-assisted localization scheme for wireless sensor networks. Proc. of 16th International Conference on Computer Communications and Networks. Honolulu, Hawaii, USA, August, 13-16, 2007: 57-62.
  • 5Lee Sangho, Kim Eunchan, and Kim Chungsan, et al.. Localization with a mobile beacon based on geometric constraints in wireless sensor networks. Proc. of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. Melbourne, Australia, December 3-6, 2007: 61-65.
  • 6Huang R and Zaruba G V. Static path planning for mobile beacons to localize sensor networks. Proc. of 5th IEEE International Conference on Pervasive Computing and Communications Workshops. White Plains, New York, March 19-23, 2007: 323-330.
  • 7Koutsonikolas D, Das S M, and Hu Y C. Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 2007, 30(13): 2577-2592.
  • 8Bahi J M, Makhoul A, and Mostefaoui A. Localization and coverage for high density sensor networks. Computer Communications, 2008, 31(4): 770-781.
  • 9Ester M, Kriegel H P, and Sander J, et al.. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. of 2nd Int. Conf. on Knowledge Discovery and Data Mining. Portland, Oregon, USA, 1996: 226-231.
  • 10Shang Y, Ruml W, and Zhang Y, et al.. Localization from mere connectivity. Proc. of the 4th ACM Int'l Symp. on Mobile Ad hoc Networking & Computing. Annapolis, Maryland, USA, June 1-3, 2003: 201-212.

共引文献13

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部