期刊文献+

基于强化学习的高可靠性多域虚拟网络映射算法 被引量:2

High-reliability multi-domain virtual network mapping algorithm based on reinforcement learning
下载PDF
导出
摘要 现有的虚拟网络映射算法大多是依赖于人工规则对节点进行排序,决定节点先后映射的顺序,来优化节点映射从而提高虚拟网络请求的成功率。而在链路映射阶段普遍采用广度优先搜索算法,忽略了节点资源和链路资源具有强相关性的特点,从而只能取得局部最优的映射结果。针对上述问题,基于5G多域异构网络环境,从网络的可生存性的保护角度出发,提出一种使用双层强化学习的虚拟网络映射算法。将强化学习同时应用于网络映射的节点和链路两阶段,使用梯度策略和反向传播的方法对该网络模型进行训练,并使用此训练模型完成映射。仿真结果表明,与对比算法相比,该算法在优化节点映射的同时优化了链路映射,且在映射成功率、长期收益率、节点和链路的利用率等方面均取得较好结果。 Most of the existing virtual network mapping algorithms rely on manual rules to sort nodes and determine the sequence of node mapping so as to optimize node mapping and improve the success rate of virtual network requests.In the link mapping stage,it generally uses the breadth-first search algorithm,ignoring the strong correlation between node resources and link resources,so that it can only obtain local optimal mapping results.In response to the above problems,based on the 5G multi-domain heterogeneous network environment,from the perspective of network survivability protection,this paper proposed a virtual network mapping algorithm using two-layer reinforcement learning.It applied reinforcement learning to both the node and link stages of network mapping,used the gradient strategy and back propagation method to train the network model of this paper,and used the training model of this paper to complete the mapping.The simulation results show that,compared with the comparison algorithms,the algorithm optimizes the link mapping while optimizing the node mapping,and achieves better results in the mapping success rate,long-term return rate,and node and link utilization rate.
作者 赵季红 宋航 曲桦 雷智麟 Zhao Jihong;Song Hang;Qu Hua;Lei Zhilin(School of Communication&Information Engineering,Xi’an University of Posts&Telecommunications,Xi’an 710121,China;School of Electronic&Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《计算机应用研究》 CSCD 北大核心 2022年第6期1809-1813,1819,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61531013) 国家重点研发计划重点专项资助项目(2018YFB1800300)。
关键词 5G多域网络 虚拟网络映射 强化学习 映射策略网络 5G multi-domain network virtual network mapping reinforcement learning mapping strategy network
  • 相关文献

参考文献6

二级参考文献72

  • 1谢红漫,钱德沛,栾钟治,陈衡.基于分层的网络拓扑结构可视化方法研究[J].北京航空航天大学学报,2004,30(6):529-533. 被引量:10
  • 2吴杰宏,杨建平.基于移动代理的层次化网络拓扑发现的设计与实现[J].微电子学与计算机,2004,21(12):67-68. 被引量:1
  • 3石贱弟,姜昱明.基于OpenGL的三维浅水海浪可视化仿真[J].微电子学与计算机,2006,23(2):137-140. 被引量:8
  • 4James Eagan,John Stasko,Ellen Zegura.Interacting with transit stub networks.Conference poster on IEEE Symposium on Information Visualization,October 2003
  • 5Zegura E W,Calvert K L,Donaoo M J.A quantitative comparison of graph based models for Intemet topology.IEEE/ACM Transactions on Networking,1997,5 (6):770~783
  • 6Ashiq Khan, Alf Zugenmaier, Dan Jurca, et at.“-Network virtualization: a hypervisor for the internet, Communications Magazine, IEEE, 50(1 ):136—143, 2012.
  • 7Anjing Wang, Mohan Iyer, Rudra Dutta, et alNetwork virtualization: Technologies, perspectives, and frontiers, Lightwave Technology, Journal of, vol.31, no.4, pp 523-537, 2013.
  • 8T. Anderson, L. Peterson, S. Shenker, et al. Overcoming the Internet impasse through virtualization, IEEE Computer, vol.38, no.4, pp 34-41, Apr, 2005.
  • 9Clark, D. D. The design philosophy of the DARPA Internet protocols, In Proc. of ACM SIGCOMM 88 (Stanford, CA, Aug. 1988), pp 106-114.
  • 10N. Chowdhury, Network virtualization: State of the art and research challenges[J]. IEEE Commun. Mag., vol.47, no.7, pp 20-26, Jul, 2009.

共引文献24

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部