期刊文献+

基于进化多目标软子空间聚类的商业银行企业客户信用风险识别 被引量:1

Corporate credit risk identification of commercial banks based on evolutionary multi-objective soft subspace clustering
下载PDF
导出
摘要 提出了一种进化多目标软子空间聚类(EMOSSC)算法,用于提升商业银行信贷审批过程中企业客户的信用风险识别和管理水平.考虑到信用数据高维、类不平衡的特征,将聚类算法中单一的聚类有效性指标转化为了一个四目标函数,并采用进化算法对该函数进行优化和求解.结果表明,EMOSSC算法不仅在信用风险识别准确率、稳健性以及结果显著性等方面显著优于对比算法,还能通过对指标权重大小的排序,揭示商业银行企业客户信用风险的关键影响因素,为商业银行的信用风险识别和管理提供有益参考. In order to promote corporate credit risk identification and management in the credit approval process,an evolutionary multi-objective soft subspace clustering(EMOSSC)algorithm with four objective functions is proposed.Considering the credit datasets are high-dimensional and class-imbalanced,a single clustering validity index in clustering algorithm is transformed into a four-objective function,and then the evolutionary algorithm is used to optimize and solve this function.The results demonstrate that the EMOSSC algorithm is not only significantly better than the other methods in terms of identification accuracy and robustness,but also can reveal key factors by sorting the index weight,which provides a series of useful references for credit risk identification and management.
作者 刘超 谢菁 李元睿 刘宸琦 Liu Chao;Xie Jing;Li Yuanrui;Liu Chenqi(College of Economics and Management,Beijing University of Technology,Beijing 100124,China;Modern Manufacturing Industry Development Research Base of Beijing,Beijing 100124,China;School of Finance,Renmin University of China,Beijing 100872,China;Department of Computer Science,University of Southern California,Los Angeles 90001,USA)
出处 《系统工程学报》 CSCD 北大核心 2022年第2期207-218,共12页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(62073007 61773029) 北京市属高校高水平教师队伍建设支持计划长城学者培养计划资助项目(CIT&TCD20170304)。
关键词 商业银行 信用风险识别 进化多目标软子空间聚类 指标重要性评价 commercial banks credit risk identification evolutionary multi-objective soft subspace clustering indicator importance evaluation
  • 相关文献

参考文献14

二级参考文献263

共引文献296

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部