期刊文献+

基于改进YOLOv4的课堂教学中学生姿态检测算法研究

Research on Student Posture Detection Algorithm in Classroom Teaching Based on Improved YOLOv4
下载PDF
导出
摘要 在评价学生的学习状态和课堂教学质量的依据中,学生在课堂上的姿态和表现尤为重要。通过人工进行记录的传统课堂监测时间较长、速度较慢并且监测工作量较大,易于导致监测数据不客观准确、不全面的问题产生。改进的YOLOv4算法具有较快的处理速度和较高的准确性,对于某些学生姿态的检测具有更好的效果。 In the basis of evaluating students'learning status and classroom teaching quality,students'posture and performance in the classroom are particularly important.The traditional classroom monitoring by manual recording takes a long time,the speed is slow and the monitoring workload is large,which can easily lead to the problems that the monitoring data are not objective,accurate and not comprehensive.The improved YOLOv4 algorithm has faster processing speed and higher accuracy,and has a better effect for the posture detection of some students.
作者 黄昶蓉 祁圣恩 包雨杭 郎子迅 牛振华 任相花 HUANG Changrong;QI Sheng'en;BAO Yuhang
出处 《科技创新与应用》 2022年第18期51-54,共4页 Technology Innovation and Application
基金 黑龙江省大学生创新创业训练计划项目(s202110214028)。
关键词 学生姿态检测 课堂教学 YOLOv4 student posture detection classroom teaching YOLOv4
  • 相关文献

参考文献4

二级参考文献26

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部