期刊文献+

基于时间感知注意力机制的混合编码网络方法 被引量:2

The method of hybrid code networks based on time-aware attention mechanism
原文传递
导出
摘要 传统的混合编码网络在小样本数据训练情况下,捕捉用户意图与语义分析方面存在局限性,很难应用到新领域进行迁移训练。时间感知注意混合编码网络(time-aware attention hybrid code networks, TAA-HCN)通过构建时间感知的注意力机制和用户意图集成(user intent integration, UII)的门控机制建模用户意图与动作措施的关系,捕捉用户意图随时间动态变化,结合元学习的思想进行模型梯度自适应,以便模型快速收敛。TAA-HCN模型在WOZ数据集与BABI数据集上进行试验与分析,当目标域数据为总数据的5%时,F1与BLEU指标几乎全收敛,且准确率为69.3%,这表明了本研究的模型具有仅需很少的目标数据即可实现良好性能的能力。 The traditional hybrid code networkshas limitations in capturing user intent and semantic analysis in the case of small sample data training, so it was challenging to apply to new fields for transfer training.The time-awareattention hybrid code networks(TAA-HCN)with enhanced time-aware attention mechanism modelled the relationship between user intent and the action measures by constructing the time-aware attention mechanism and the gating mechanism of user intent integration(UII), to capture the dynamic changes of user intentions over time, the model gradient adaptation was combined with the idea of meta-learning, so that the model could converge quickly. The TAA-HCN model was tested and analyzed on the WOZ data set and the BABI data set. When the target domain data was 5% of the total data, themetrics of F1 and the BLEU almost fully converged, and the accuracy rate was 69.3%. It was shown that the model in this study had the ability to achieve good performance with very little target data.
作者 宁春梅 孙博 肖敬先 陈廷伟 NING Chunmei;SUN Bo;XIAO Jingxian;CHEN Tingwei(College of Information,Liaoning University,Shenyang 110036,Liaoning,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2022年第2期23-30,40,共9页 Journal of Shandong University(Engineering Science)
关键词 特定领域对话系统 元学习 用户意图时间感知注意机制 混合编码网络 时间感知递归单元 task-oriented dialogue system meta-learning user intention time-aware attention mechanism hybrid code network time-aware recurrent unit
  • 相关文献

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部