期刊文献+

一种面向多标签分类的在线主动学习算法 被引量:3

An online active learning algorithm for multi-label classification
原文传递
导出
摘要 针对现有算法多标签分类器收敛效率低和标签查询策略未考虑特征辨别能力的弊端,提出一种基于判别采样和镜像梯度下降规则的多标签在线主动学习算法(multi-label active mirror descent by discrimination sampling,MLAMD_D)。MLAMD_D算法采用二元关联策略将包含C个标签的多标签分类问题分解成C个相互独立的二分类问题,算法使用镜像梯度下降规则更新其二分类器,并采用基于判别的采样策略。将MLAMD_D算法与现有算法以及基于随机采样和镜像梯度下降规则的多标签在线主动学习算法(multi-label active mirror descent by random sampling,MLAMD_R)在6个多标签分类数据集上进行对比试验。试验结果表明,MLAMD_D算法的多标签分类性能优于其他多标签在线主动学习算法。因此,MLAMD_D算法在处理多标签在线主动学习的任务中具有可行性和有效性。 Multi-label active mirror descent by discrimination sampling(MLAMD_D)was proposed to overcome the drawbacks of the existing algorithms,such as low convergence efficiency of multi-label classifier and the label query strategy did not consider the discriminative ability of features.The MLAMD_D algorithm used the binary relevance strategy to decompose the multi-label classification problem with C labels into C independent binary classification problems.The MLAMD_D algorithm used the mirror descent rule to update each binary classifier,meanwhile,the algorithm adopted the discrimination-based sampling strategy.The proposed algorithm was compared with the existing algorithms and multi-label active mirror descent by random sampling algorithm(MLAMD_R)on 6 multi-label classification data sets.The convincing experimental results showed that the performance of the MLAMD_D algorithm was superior to other multi-label online active learning algorithms.Therefore,the MLAMD_D algorithm was feasible and effective when dealing with multi-label online active learning tasks.
作者 龚楷伦 翟婷婷 唐鸿成 GONG Kailun;ZHAI Tingting;TANG Hongcheng(College of Information Engineering,Yangzhou University,Yangzhou 225127,Jiangsu,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2022年第2期80-88,共9页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61906165) 江苏省高等学校自然科学研究资助项目(19KJB520064)。
关键词 在线主动学习 多标签分类 弱监督学习 基于判别的采样策略 二元关联策略 online active learning multi-label classification weakly-supervised learning discrimination-based sampling strategy binary relevance strategy
  • 相关文献

参考文献3

二级参考文献25

  • 1许冠英,韩萌,王少峰,贾涛.数据流集成分类算法综述[J].计算机应用研究,2020,37(1):1-8. 被引量:11
  • 2Schapire R E, Singer Y. BoosTexter: a boosting-based system for text categorization [J]. Machine Learning, 2000, 39(2-3): 135-168. [DOI: 10.1023/A:1007649029923].
  • 3Hoi S C H, Jin R, Zhu J K, et al. Semi-supervised svm batch mode active learning for image retrieval [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Patt-ern Recognition. Anchorage, AK: IEEE, 2008: 1-7. [DOI:10.1109/CVPR.2008.4587350].
  • 4Huang S J, Jin R, Zhou Z H. Active learning by querying infor-mative and representative examples [C]//Proceedings of the 24th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: NIPS, 2010: 892-900. [DOI:10.1109/TPAMI.2014.2307881].
  • 5Balcan M F, Broder A Z, Zhang T. Margin based active learning [C]//Proceedings of the 20th Annual Conference on Learning Theory. San Diego, CA, USA: Springer Berlin Heidelberg, 2007: 35-50.
  • 6Freund Y, Seung H S, Shamir E, et al. Selective sampling using the query by committee algorithm [J]. Journal of Machine Learning, 1997, 28(2-3): 133-168. [DOI: 10.1023/A:1007330508534].
  • 7Yu K, Bi J, Tresp V. Active learning via transductive experimental design [C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA: ACM, 2006: 1081-1088. [DOI: 10.1145/1143844.1143980].
  • 8Dasgupta S, Hsu D. Hierachical sampling for active learning [C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008: 208-215.
  • 9Donmwz P, Carbonell J G, Bennett P N. Dual strategy active learning [C]//Proceedings of the 18th European Conference on Machine Learning. Berlin: Springer, 2007: 116-127. [DOI: 10.1007/978-3-540-74958-5_14].
  • 10Nguyen H T, Smeulder A W. Active learning using pre-clustering [C]//Proceedings of the 21st International Conference on Machine Learning. New York, USA: ACM, 2004: 623-630.

共引文献30

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部