期刊文献+

基于多参数融合的行为安全监测研究

Research on Monitoring for Behavior Safety Based on Multi-parameter Integration
下载PDF
导出
摘要 为解决日益突出的老年人口居家养老和看护问题,设计了一种基于加速度传感器和高度传感器的可穿戴系统。通过将多传感器参数与卡尔曼滤波进行融合,结合四元数对人体姿态进行识别,实现跌倒检测,并实时监控异常行为。实验结果表明,基于多传感器参数融合的卡尔曼滤波和Mahony姿态角的解析算法,在测试样本中检测跌倒的准确率为95%,具有检测精度高、计算量小、检测方便等特点,能更好解决居家养老和看护问题。 In order to solve the increasingly prominent problems of home-based elderly care and care for the elderly population,a wearable system based on acceleration sensor and height sensor is designed.By fusing multi-sensor parameters with Kalman filter and combining quaternion to recognize human posture,fall detection is realized and abnormal behavior is monitored in real time.The experimental results show that the Kalman filter based on multi-sensor parameter fusion and the analytical algorithm of Mahony attitude angle can detect falls in the test samples with an accuracy of 95%.It has the characteristics of high detection accuracy,small amount of calculation and convenient detection,and can better solve the problems of home care and nursing.
作者 李小奇 郑建立 LI Xiao-qi;ZHENG Jian-li(School of Medical Instrument&Food Engineering,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《软件导刊》 2022年第6期125-128,共4页 Software Guide
基金 国家重点研发计划项目子课题(2019YFC2005802)。
关键词 可穿戴 多传感器 卡尔曼融合 四元数 姿态角 wearable multi-sensors Kalman fusion quaternion attitude angles
  • 相关文献

参考文献9

二级参考文献45

  • 1覃朝晖,于普林,朱晓平,吴迪,乌正赉.北京市城市社区1512名老年人跌倒的危险因素分析[J].中华流行病学杂志,2006,27(7):579-582. 被引量:88
  • 2山田刚良,南庭(译).3轴加速度传感器将在消费电子产品中普及[J].电子设计应用,2007(1):78-82. 被引量:5
  • 3LUO S H, HU Q M. A dynamic motion pattern analysis approach to fall detection [ C ] //IEEE International Workshop on Biomedical Circuits & Systems. [ S. l. ] : [s. n. ] ,2004:53 -56.
  • 4BROMILEY P A,COURTNEY P,THACKER N A. De- sign of a visual system for detecting natural events by the use of an independent visual estimate : a human fall detector[ C] //Empirical Evaluation Methods in Com- puter Vision. [ S. l. ] : [ s. n. ] ,2002:231 - 235.
  • 5DOUGHTY K, CAMERON K. Primary and secondary sensing techniques for fall detection in the home [ R ]. London : City University, 1999.
  • 6FISCHER M J, LYNCH N A, PATERSON M S. Impos- sibility of distributed consensus with one faulty proces- sor [ J ]. Journal of the ACM, 1985,32 (2) : 374 - 382.
  • 7YU X G. Approaches and principles of fall detection for elderly and patient[ C ] // 2008 10th International Conference on E -health Networking, Applications and Services. [S. l. ]:[s. n. ] ,2008:42-47.
  • 8EUGENE S,VLANDIMIR B,JOHN G. Medical emer- gency event detection : detecting falls [ D ]. Boston : MIT Computer Science and Artificial Intelligence La- boratory, 2004.
  • 9曹玉珍,蔡伟超,程旸.基于MEMS加速度传感器的人体姿态检测技术[J].纳米技术与精密工程,2010,8(1):37-41. 被引量:69
  • 10石欣,熊庆宇,雷璐宁.基于压力传感器的跌倒检测系统研究[J].仪器仪表学报,2010,31(3):715-720. 被引量:55

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部