期刊文献+

基于STFT和CNN的齿轮箱故障诊断 被引量:7

Fault Diagnosis of Gearbox Based on STFT and CNN
下载PDF
导出
摘要 针对浅层机器学习方法应用于齿轮箱故障诊断故障识别率低的问题,提出一种基于短时傅里叶变换和卷积神经网络的齿轮箱智能故障诊断方法。对齿轮的振动信号进行短时傅里叶变换得到时频图并输入到CNN故障诊断模型,根据模型输出的结果给出齿轮箱的故障状态,从而实现齿轮箱的故障诊断。在齿轮箱动力学模拟实验台采集多种不同故障齿轮的振动信号进行实验验证。实验结果表明:该方法能有效识别齿轮的故障状态,故障诊断准确率能够达到100%。 To solve the problem of low fault recognition rate of shallow machine learning methods applied to gearbox fault diagnosis,a gearbox intelligent fault diagnosis method based on short-time Fourier transform and convolutional neural network is proposed.Short-time Fourier transform is performed on the gear vibration signal to obtain the time-frequency diagram and input it into the CNN fault diagnosis model.According to the output of the model,the fault status of the gearbox is given,so as to realize the fault diagnosis of the gearbox.The vibration signals of a variety of different faulty gears are collected on the gearbox dynamics simulation experiment platform for experimental verification.The experiment results show that the method can effectively identify the fault state of the gear with the fault diagnosis accuracy rate at 100%.
作者 余传粮 梁睿君 冉文丰 王志强 YU Chuanliang;LIANG Ruijun;RAN Wenfeng;WANG Zhiqiang(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《机械制造与自动化》 2022年第3期152-154,195,共4页 Machine Building & Automation
关键词 齿轮箱 故障诊断 短时傅里叶变换 卷积神经网络 gearbox fault diagnosis short-time Fourier transform convolution neural network
  • 相关文献

参考文献4

二级参考文献47

  • 1李云,郭瑜,那靖,李宗涛,于宪军.基于包络同步平均的齿轮故障诊断[J].振动与冲击,2013,32(19):17-21. 被引量:6
  • 2夏庆观.基于DataSocket和小波消噪的齿轮故障远程监测与诊断[J].现代制造工程,2004(2):90-92. 被引量:1
  • 3CHENGJun-sheng YUDe-fie YANGYu.A Method for Gear Fault Diagnosis Based on the Empirical Mode Decomposition[J].International Journal of Plant Engineering and Management,2004,9(4):230-235. 被引量:4
  • 4Meltzer G, Nguyen Phong Dien. Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps[J]. Mechanical Systems and Signal Processing, 2004 (18) :985-992.
  • 5Lai W X, Tse P W, Zhang G C, et al. Classification of gear faults using cumulates and the radial basis function network[J]. Mechanical Systems And Signal Processing, 2004, 18(2): 381-389.
  • 6Wang Wenyi, Albert K W. Autoregressive model-based gear fault diagnosis[J]. Journal of Vibration and Acoustics,2004, 124(4):172-179.
  • 7Bocaniala C D, da Costa J S, Palade V. Refinement of the diagnosis process performed with a fuzzy classifier[J].Lecture Notes In Artificial Intelligence, 2004(3215): 365-372.
  • 8I.iao S H. Expert system methodologies and applications-a decade review from 1995 to 2004[J]. Expert Systems With Applications, 2005, 28 (1):93-103.
  • 9I.iu S C, Liu S Y. An efficient expert system for machine fault diagnosis[J]. Int J Adv Manuf Technol, 2003(21):691-698.
  • 10Wilson W, Fathy I. A neuro-fuzzy approach to gear system monitoring[J]. IEEE Transactions on Fuzzy Systems,2004, 12 (5): 710-723.

共引文献65

同被引文献70

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部