期刊文献+

基于机器视觉的大尺寸薄壁机械零件微裂纹检测研究 被引量:2

Research on Micro-crack Detection of Large-size and Thin-walled Mechanical Parts Based on Machine Vision
下载PDF
导出
摘要 当前的微裂纹检测方法不能对微裂纹图像进行平滑处理,导致无法有效检测到微裂纹的长度、面积以及圆度。为此,设计一种基于机器视觉的大尺寸薄壁机械零件微裂纹检测方法,对大尺寸薄壁机械零件微裂纹图像进行灰度拉伸,利用邻域均值算法对拉伸后的图像进行平滑处理,进而利用机器视觉理论提取微裂纹图像缺陷特征,通过计算对微裂纹的缺陷特征进行约束处理,完成大尺寸薄壁机械零件的微裂纹检测。测试结果表明:该方法具有较好的检测效果和精准度。 To overcome the poor effective detection of the length,area and roundness of micro-crack due to its unsmooth image worked by current detection methods,a micro-crack detection method for large scale thin-walled mechanical parts based on mechanical vision is designed,with which the micro-crack image of large scale thin-walled mechanical parts is gray stretched,the stretched image is smoothed by the neighborhood mean algorithm,the defect characteristics of micro-crack image are extracted by machine vision theory and the defect characteristics of micro-cracks are constrained by calculation so as to complete the micro-crack detection of large size thin-walled mechanical parts.The test results show that the designed method has good detection effect and accuracy.
作者 张娟飞 ZHANG Juanfei(Shaanxi Institute of Technology,Xi'an 710300,China)
出处 《机械制造与自动化》 2022年第3期225-228,共4页 Machine Building & Automation
基金 陕西国防工业职业技术学院2021年度科研计划项目(Gfy21-22)。
关键词 机器视觉 薄壁机械 微裂纹 邻域均值滤波 灰度拉伸 machine vision thin-walled machinery micro-cracks neighborhood mean filtering gray scale stretching
  • 相关文献

参考文献11

二级参考文献84

共引文献67

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部