摘要
当前的微裂纹检测方法不能对微裂纹图像进行平滑处理,导致无法有效检测到微裂纹的长度、面积以及圆度。为此,设计一种基于机器视觉的大尺寸薄壁机械零件微裂纹检测方法,对大尺寸薄壁机械零件微裂纹图像进行灰度拉伸,利用邻域均值算法对拉伸后的图像进行平滑处理,进而利用机器视觉理论提取微裂纹图像缺陷特征,通过计算对微裂纹的缺陷特征进行约束处理,完成大尺寸薄壁机械零件的微裂纹检测。测试结果表明:该方法具有较好的检测效果和精准度。
To overcome the poor effective detection of the length,area and roundness of micro-crack due to its unsmooth image worked by current detection methods,a micro-crack detection method for large scale thin-walled mechanical parts based on mechanical vision is designed,with which the micro-crack image of large scale thin-walled mechanical parts is gray stretched,the stretched image is smoothed by the neighborhood mean algorithm,the defect characteristics of micro-crack image are extracted by machine vision theory and the defect characteristics of micro-cracks are constrained by calculation so as to complete the micro-crack detection of large size thin-walled mechanical parts.The test results show that the designed method has good detection effect and accuracy.
作者
张娟飞
ZHANG Juanfei(Shaanxi Institute of Technology,Xi'an 710300,China)
出处
《机械制造与自动化》
2022年第3期225-228,共4页
Machine Building & Automation
基金
陕西国防工业职业技术学院2021年度科研计划项目(Gfy21-22)。
关键词
机器视觉
薄壁机械
微裂纹
邻域均值滤波
灰度拉伸
machine vision
thin-walled machinery
micro-cracks
neighborhood mean filtering
gray scale stretching