期刊文献+

基于有限元法的水下绝缘体小目标电磁场探测方法仿真研究

Simulation of detecting small underwater insulative target through electromagnetic field based on finite element method
下载PDF
导出
摘要 开展具有自主知识产权的水下绝缘体小目标探测方法研究,可为我国海域勘探开发提供技术支撑。文章将基于有限元的电磁场探测方法应用到水下绝缘体小目标的检测:首先利用ANSYS Maxwell软件进行建模仿真;然后对不同电流及不同水面高度/水下深度有无绝缘体小目标的磁感应强度进行模拟并计算其差值。结果表明,当水下导线直流电流为200 A时,磁感应强度模拟差值大于0.3 nT,可在350 m×350 m×35 m的海域内有效探测有无绝缘体小目标通过。 It is desirable to develop an effective method for detecting the small insulative underwater target for the marine exploration and development. In this paper, an electromagnetic field detection method based on the finite elements is proposed for the detection of small underwater insulative targets. The simulation is carried out by using the ANSYS Maxwell software. According to the calculated difference of the magnetic induction intensity with or without the target for different current values in the underwater wire and different water heights and depths of the object, it is shown that for the current as high as 200 A passing through the underwater wire, the simulated difference of the magnetic induction intensity is greater than 0.3 nT, adequate to determine whether there is a small insulative target in the sea area of 350 m×350 m×35 m.
作者 高俊侠 王君楷 易忠 GAO Junxia;WANG Junkai;YI Zhong(Beijing University of Technology,Beijing 100124,China;Beijing Institute of Spacecraft Environment Engineering,Beijing 100094,China)
出处 《航天器环境工程》 北大核心 2022年第3期293-297,共5页 Spacecraft Environment Engineering
基金 北京卫星环境工程研究所创新基金项目“水下小目标电磁探测方法的研究”。
关键词 有限元法 水下绝缘体小目标 磁场探测 电磁场仿真软件 finite element method small underwater insulative target magnetic field detection electromagnetic field simulation software
  • 相关文献

参考文献2

二级参考文献15

  • 1胡桥,何正嘉,訾艳阳,张周锁.基于模糊支持矢量数据描述的早期故障智能监测诊断[J].机械工程学报,2005,41(12):145-150. 被引量:13
  • 2NADAKUDITI R R, EDELMAN A. Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples [J]. IEEE Transactions on Signal Processing, 2008, 56(7):2625-2638.
  • 3QUINNBG, HANNAN E. The estimation and tracking of frequency[M]. Cambridge, UK: Cambridge University Press, 2001.
  • 4Mundorff F, Carstensen H, Bierbaumer J. Direct injection internal combustion engines-The Automotive industry's contribution to reduced CO2 emissions. SAE Paper 982217
  • 5Lake T H, Stokes J et al. Comparison of direct injection gasoline combusion systems. SAE paper 980154
  • 6Demirbas A. Fuel properties of hydrogen, liquefied petroleum gas (LPG), and compressed natural gas (CNG) for transportation. Energy Sources, 2002; 24 (7): 601-610
  • 7Yamin J A, Badram O O. Analytical study to minimize the heat losses for propane powered 4-stroke spark ignition engine. Renewable Energy, 2002; 27
  • 8Demirbas A. Fuel properties of hydrogen, liquefied petroleum gas (LPG), and compressed natural gas (CNG) for transportation. Energy Sources, 2002; 24 (7)
  • 9Schlieter H, Eigenbrod H. Method for the Formation of Radiated Beams in Direction Finder Systems[P]. United States Patent: US 6021096.
  • 10Schlieter H. Passive Sonar Detection Improvement by HyperbeamTM Technique[C]//UDT, Europe 2006, Ham- burg, Germany, 2006: 7A-2.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部