期刊文献+

基于网络信息与遥感影像的水库自动提取方法研究

Research on automatic reservoir extraction method based on network information and remote sensing image
下载PDF
导出
摘要 针对传统建立水库相关数据库的方法多为线下人工统计,受到诸多因素制约的缺陷,将网络信息、电子地图及遥感影像等数据综合利用起来,实现水库自动提取。利用网络爬虫从官方水利政务网站抓取相关信息,筛选出最新的水库名称及所属地等数据,再根据水库名称及所属地,调用百度、高德等地图网站提供的应用接口,获取水库的空间坐标信息,并利用水库坐标对遥感影像做缓冲区分析,提取出水库水体范围,得到1个含有水库名称、坐标、面矢量图的水库基础数据库。经过验证,提取结果的查准率为0.9735,查全率为0.6113,作为二者的调和平均值达到0.751,能够完整监测并提取出大中型水库,但对小型水库的监测提取效果一般,可解决传统水库提取方法需要先验知识的问题,提高对水库的区域性动态监测能力。 In view of the shortcomings of traditional methods of developing reservoir-related database,which are mostly offline manual statistics and restricted by many factors,the study comprehensively uses data such as network information,electronic map and remote sensing image to realize automatic extraction of reservoirs’information.The method uses web crawlers to grab relevant information from official water sector websites.The latest data such as the name and location of reservoirs are screened,and then,according to the name and location of the reservoir,the application interface provided by the map websites such as Baidu and Gaode is used to obtain the spatial coordinate information of the reservoir.The reservoir coordinates are used for buffer zone analysis on the remote sensing image to extract surface water area of the reservoir.Then a basic database of reservoir is obtained with regard to the name,coordinates and vector map of the reservoir.After verification,precision ratio of the extracted result is 0.9735,recall ration is 0.6113,and harmonic mean value of the two ratios is 0.751.The large and medium reservoirs can be completely monitored and extracted,however,the performance for small reservoirs is fair.This method solves the problem that priori knowledge is needed in traditional reservoir extraction methods and it improves the regional dynamic monitoring capability of reservoirs.
作者 杨智文 陈金云 张志远 YANG Zhiwen;CHEN Jinyun;ZHANG Zhiyuan(School of Remote Sensing Information Engineering,Wuhan University,Wuhan 30079,China;School of Civil Engineering,Chongqing University,Chongqing 00030,China;Information Center,Ministry of Water Resources,Beijing 100053,China)
出处 《水利信息化》 2022年第3期34-39,共6页 Water Resources Informatization
基金 国家重点研发计划(2021YFB3900603)。
关键词 水库 自动提取 网络信息 爬虫 遥感影像 水体提取 地图API reservoir automatic extraction network information crawler remote sensing image water body extraction map API
  • 相关文献

参考文献10

二级参考文献78

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部