期刊文献+

基于粒子群优化算法的智慧微电网风光储容量优化配置 被引量:16

Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm
下载PDF
导出
摘要 随着“双碳”目标的提出,国内多地鼓励建筑屋顶建设清洁能源发电系统,由风光储组成微电网,通过新能源发电有效降低区域生产活动的碳排放,并提高生活办公区的供电可靠性。针对微电网投资的经济性,其风光储容量配比一直属于研究热点。依托海南省特有的地理环境,根据当地的光照、风速条件,利用粒子群优化算法,以最大经济效益为寻优目标,选取最优风光储装机容量配比,并利用节能办公住宅区智能微电网建设示范项目所采集的数据进行经济性分析,可以为智能微电网节能改造提供理论和数据基础。 With the proposal of the goals of carbon peaking and carbon neutrality,constructing clean energy generators on roof tops is widely recommended in different regions of China.The microgrid consisting of wind power,photovoltaic power and energy storage devices,can reduce carbon emissions from regional production activities through new energy generation,and improve the power supply reliability of living and office areas.To optimize the return of the investment on microgrid,the ratio of wind power,photovoltaic power and energy storage capacity of a hybrid system has been the focus of researches.According to the light condition,wind speed and other unique geographical features in Hainan Province,the optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid is calculated by particle swarm optimization algorithm.Data collected from the living and office areas of the smart microgrid demonstrative project are used in an economic analysis,which provide theoretical basis and data resources for the further energy efficiency retrofit of smart microgrids.
作者 王鑫 陈祖翠 卞在平 王业耀 吴育苗 WANG Xin;CHEN Zucui;BIAN Zaiping;WANG Yeyao;WU Yumiao(Hainan Zhonghongxin Engineering Consulting Company Limited,Haikou 571100,China;Hainan Electric Power Design&Research Institute,Haikou 571100,China)
出处 《综合智慧能源》 CAS 2022年第6期52-58,共7页 Integrated Intelligent Energy
基金 中国电力建设集团科技项目(DJ-ZDXM-2019-48) 海口市重大科技计划项目(2020-025)。
关键词 智慧微电网 粒子群优化算法 碳中和 容量配比 多目标优化 风电 光伏发电 储能 节能减排 电能替代 smart microgrid particle swarm optimization algorithm carbon neutrality capacity ratio multi-objective optimization wind power photovoltaic power generation energy storage energy conservation and emission reduction electric energy substitution
  • 相关文献

参考文献21

二级参考文献238

共引文献285

同被引文献232

引证文献16

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部