期刊文献+

基于共同邻居相似度的改进标签传播算法

An Improved Label Propagation Algorithm Based on Common Neighbors Similarity
下载PDF
导出
摘要 标签传播算法是一种重要的社区发现算法,具有不需要先验知识、时间复杂度低的优点.针对传统标签传播算法随机性强导致社区发现结果稳定性差的问题,提出基于共同邻居相似度的改进标签传播算法LPACN,在选择邻居节点中出现次数最多的标签时,将邻居节点与该节点的相似度一并考虑,降低了标签选择的随机性,提高了算法的稳定性.在4个基准网络数据集上进行了对比实验,实验结果表明基于共同邻居相似度的改进标签传播算法能够得到更好的社区划分. Label propagation is an important community detection algorithm,which doesn′t require prior knowledge and has low time complexity. In view of the poor stability of community discovery results caused by the randomness of traditional label propagation algorithm,an improved label propagation algorithm based on common neighbors similarity is proposed. When choosing the most frequent labels of neighbor nodes,the similarity between neighbor nodes and the current node is considered together,which reduces the randomness of label selection and improves the stability of the algorithm. We evaluate the proposed algorithm on four benchmark networks,and the experimental results show that the improved label propagation algorithm based on common neighbors similarity obtains better community partition results.
作者 刘井莲 于丽萍 吴亚明 李显凯 赵卫绩 LIU Jing-lian;YU Li-ping;WU Ya-ming;LI Xian-kai;ZHAO Wei-ji(School of Information Engineering,Suihua University,Suihua 152061,China)
出处 《通化师范学院学报》 2022年第6期60-65,共6页 Journal of Tonghua Normal University
基金 黑龙江省省属高校基本科研业务费科研项目(KYYWF10236180104,YWK10236200141) 黑龙江省大学生创新训练项目(201910236024)。
关键词 标签传播 社区发现 节点相似度 共同邻居相似度 label propagation community discovery node similarity common neighbors similarity
  • 相关文献

参考文献7

二级参考文献101

  • 1汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 2Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6638): 440-442.
  • 3Barabdsi A-L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
  • 4Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proc of National Academy of Science, 2002, 9(12): 7821-7826.
  • 5Fortunato S. Community detection in graphs [J]. Physics Reports, 2010, 486(3/4/5): 75-174.
  • 6Gavin A C, Bosche M, Krause R. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868): 141-147.
  • 7Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structures of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818.
  • 8Tyler J R, Wilkinson D M, Huberman B A. Email as spectroscopy: Automated discovery of community structure within organizations [C] //Proc of the 1st Int Conf on Communities and Technologies. Amterdam, Netherlands: Kluwer Academic Publishers, 2003 : 81-96.
  • 9Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks [J]. Proc of National Academy of Science, 2004, 101(9): 2658-2663.
  • 10Newman M E J, Girvan M. Finding and evaluating community structure in networks [J]. Physical Review E, 2004, 69(2): 026113.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部