期刊文献+

随机派系网络模型统计性质研究

Statistics and analysis of the random cliques networks
下载PDF
导出
摘要 提出派系作为构建复杂网络的基本模体,在随机选择规则下,采用自然增长方式构建随机派系网络的方法,并比较分析在此方式下网络的度分布、平均路径长度和聚类系数.研究发现随机派系网络的度分布服从多重泊松分布,且派系大小n越大,分层越多;随机派系网络相比于ER随机网络具有更高的聚类系数,且派系大小n越大,聚类系数越大;随机派系网络相比于ER随机网络具有更短的平均路径长度,且派系大小n越大,平均路径长度越短.随机派系网络模型是一个具有高的聚类系数和短的平均路径长度的网络模型,可以较好地描述现实中的复杂网络的高聚类小世界的性质,它为小世界网络模型的构建提供一种新的思路. We proposed cliques as the basic motif for constructing complex networks.Under the random selection rules,natural growth was used to construct random clique networks,and the degree distribution,average path length and clustering coefficient of the network under this method were compared and analyzed.The study found that the degree distribution of the random clique network obeyed the multiple Poisson distribution,and the larger the clique size n,the more stratification;the random clique network had a higher clustering coefficient than the ER random network,and the larger the clique size n,the larger the clustering coefficient was;the random clique network had a shorter average path length than the ER random network,and the larger the clique size n,the shorter the average path length.The random clique network model was a network model with high clustering coefficient and short average path length.It can better describe the nature of the high-clustering small world of complex networks in reality.It provides a new way of thinking for the construction of small world network models.
作者 周志毅 杨翔宇 李子健 丁益民 ZHOU Zhiyi;YANG Xiangyu;LI Zijian;DING Yimin(Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062, China)
出处 《湖北大学学报(自然科学版)》 CAS 2022年第4期466-472,共7页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(12074107)资助。
关键词 复杂网络 派系 聚类系数 平均路径长度 complex networks clique cluster coefficient character path length
  • 相关文献

参考文献6

二级参考文献128

  • 1欧阳丽炜,袁勇,郑心湖,张俊,王飞跃.基于区块链的传染病监测与预警技术[J].智能科学与技术学报,2020(2):135-143. 被引量:24
  • 2胡世雄,李俊华,刘富强,张红,白晓蓉,刘运芝,段丽琼.湖南省SARS早期症状监测预警系统的建立与反应[J].疾病监测,2005,20(7):344-346. 被引量:5
  • 3[37]Boccaletti S,Latora V,Moreno Y,et al.Complex networks:structure and dynamics.Phys Rep,2006,424:175-308.
  • 4[38]Scott J.Social Network Analysis:A Handbook.2nd ed.London:Sage Publications,2002.
  • 5[39]Latora V,Marchion M.Efficient behavior of small-world networks.Phys Rev Lett,2001,87:198701.
  • 6[40]Latora V,Marchiori M.Economic small-world behavior in weighted networks.Eur Phys J B,2003,32:249-263.
  • 7[41]Latora V,Marchiori M.A measure of centrality based on the network efficiency.[2007-12-18].http://arxiv.org/abs/cond-mat/0402050.
  • 8[42]Fortunato S,Latora V,Marchiori M.Method to find community structures based on information centrality.Phy Rev E,2004,70(5):056104.
  • 9[43]Reichardt J,Bomholdt S.Detecting fuzzy community structures in complex networks with a Potts model.Phys Rev Lett,2004,93(21):218701.
  • 10[44]Reichardt J,Bomholdt S.Statistical mechanics of community detection.Phys Rev E,2006,74(1):016110.

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部