期刊文献+

基于雾线暗通道先验改进的图像去雾算法 被引量:3

Improved Image Dehazing Algorithm Based on Haze-line and Dark Channel Prior
原文传递
导出
摘要 针对现有图像去雾算法中大气光值和透射率估计不准确导致图像去雾后失真的问题,提出了一种基于雾线暗通道先验改进的图像去雾算法。首先,根据HSV空间雾浓度与亮度和饱和度差值的关系计算图像的全局相对雾浓度,并结合暗通道图对应的高像素值来设置能够自动选择合适的大气光值的权重系数;其次,利用暗通道先验得到的粗略透射率值对每条雾线中最大半径透射率进行修正,然后引入容差参数对明亮像素的透射率进行优化,引入快速引导滤波对透射率图进行进一步优化;最后,根据大气散射模型获得最终的无雾图像。实验结果表明,所提去雾算法在主观视觉效果和客观数据上均优于其他算法。 To address the problem of image dehazing distortion caused by inaccurate estimation of atmospheric light value and transmission in existing image dehazing algorithms,an improved image dehazing algorithm based on dark channel prior and hazeline prior is proposed.First,we compute the global relative haze concentration of the image using the relationship between haze concentration and the difference in brightness and saturation in HSV space and combine the highpixel value corresponding to the dark channel map to set the weight coefficient that can automatically select the appropriate atmospheric light value.Second,we use the rough transmittance value obtained by the dark channel prior to correct the maximum radius transmittance in each hazeline,and then introduce a tolerance parameter to optimize the transmittance of bright pixels.Next,fast guiding filtering is introduced to further optimize the transmittance maps.Finally,the final hazefree image based on the atmospheric scattering model is obtained.The experimental results show that the image dehazing algorithm proposed in this research outperforms the current algorithms in terms of subjective visual effect and objective data.
作者 袁小平 陈艳宇 石慧 Yuan Xiaoping;Chen Yanyu;Shi Hui(College of Information Science and Control Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第8期171-178,共8页 Laser & Optoelectronics Progress
关键词 图像处理 雾线暗通道先验 雾浓度 容差参数 明亮像素 大气散射模型 image processing hazeline and dark channel prior haze concentration tolerance parameter light pixel atmospheric scattering model
  • 相关文献

参考文献10

二级参考文献131

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2Nicolas Hautiere,Didier Aubert.Contrast restoration of foggy images through use of all onboerd canmera[J].Proceeding of the 8th intemational IEEE conference on intelligent transportation systems,2005,9:601-606.
  • 3Srinivasa G Narasimhan.Shree K Nayar.Contrast restoration of weather degraded images[J].IEEE Transactions on pattern analysis and machine intelligence,2003.25(6):713-724.
  • 4lnampud R B,Purimetla T N,Satyanarayana P G.contrast degradation for improving quality of an image[J].Geoscielice and Remote Sensing Symposium,2002.6:3408-3410.
  • 5Srinivasa G Narasimhan,Shree K Nayar.Removing weather effects from monochrome images[J].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001,2:186-193.
  • 6Schechner Y Y,Narasimhan S G,Nayar S K.Instant dehazing of imsges using polarition[J].IEEE computer society conferenco on computer vision and pattem recognition,2001,1:325-332.
  • 7Srinivasa G Nasnsimhan,Shree K Nayar.Shedding light on the weather[J].Proceedings of the 2003 IEEE computer society conference on computer vision and pattem recognition,2003,1:665-672.
  • 8孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 9Rafael C Gonzalcz,Richard E Woods. Digital Image Processing(Second Edition)[M]. Beijing:Publishing House of Electronics Industry,2002.
  • 10HUNG-SHUNG WONG,JUNC-HUA WANG. Contrast Enhancement Based on Divided Histogram Manipulation[A].2000 IEEE Int'1 Conf on Systems, Man and Cybernetics. Vol 2[C]. 2000. 1551-1555.

共引文献455

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部