期刊文献+

Probing CO on a rutile TiO_(2)(110)surface using atomic force microscopy and Kelvin probe force microscopy 被引量:1

原文传递
导出
摘要 Probing CO at a specific site on a metal oxide surface is essential for characterizing various applications such as CO oxidation,hydrogenation,and water–gas shift reaction.Herein,we use atomic force microscopy and Kelvin probe force microscopy to probe the CO on a rutile TiO_(2)(110)surface.Our results indicate that CO can be manipulated along the Ti row by the repulsive lateral force of“pushing”mode.Furthermore,the joint combination of precise manipulation and the distance dependence of local contact potential difference allow us to resolve the interatomic dipole moment and charge state of CO at atomic resolution.Therefore,we found that the negatively charged CO with the dipole moment of negative pole down on the rutile TiO_(2)(110)surface.Our results suppose that both the charge state as well as the on-surface dipole interaction are very effective for CO reaction on rutile TiO_(2)(110)surface.
出处 《Nano Research》 SCIE EI CSCD 2022年第3期1909-1915,共7页 纳米研究(英文版)
基金 a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science(JSPS)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan(JP16H06327,JP16H06504,and JP17H01061) This work was also supported by the International Joint Research Promotion Program of Osaka University(J171013014,J171013007,and Ja19990011) This project was supported by the National Natural Science Foundation of China(NSFC)JSPS-NSFC(No.J191053055).
  • 相关文献

参考文献2

二级参考文献37

  • 1Ishii H, Sugiyama K, Ito E, et al. Energy level alignment and interracial electronic structures at organic/metal and organic/organic interfaces. Adv Mater, 1999. 11:605-625.
  • 2Heimel G, Salzmann I, Duhm S, et al. Design of organic semiconductors from molecular electrostatics. Chem Mater, 2010, 23: 359-377.
  • 3Gerlach A, Hosokai T, Duhm S, et al. Orientational ordering of nonplanar phthalocyanines on Cu(111): Strength and orientation of the electric dipole moment. Phys Rev Lett, 2011, 106:156102.
  • 4Terentjevs A, Steele M P, Blumenfeld M L, et al. lnterfacial electronic structure of the dipolar vanadyl naphthalocyanine on A u(l 11): "Push-back" vs dipolar effects. J Phys Chem C, 2011, 115: 21128-21138.
  • 5Niu T, Zhou M, Zhang J, et al. Dipole orientation dependent symmetry reduction of chloroaluminum phthalocyanine on Cu( 111 ). J Phys Chem C, 2013, 117:1013-1019.
  • 6Heimel G, Romaner L, Zojer E, et al. The interface energetics of self-assembled monolayers on metals. Acc Chem Res, 2008, 41: 721-729.
  • 7Martinez-Diaz M V, de la Torre G, Tortes T. Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun, 2010, 46:7090-7108.
  • 8Wang Y, Kr/3ger J, Berndt R, et al. Structural and electronic properties of ultrathin tin-pbthalocyanine films on Ag(lll) at the single-molecule level. Angew Chem Int Ed, 2009, 48:1261-1265.
  • 9Barlow D E, Hipps K W. A scanning tunneling microscopy and spectroscopy study of vanadyl phthalocyanine on Au(lll): The effect of oxygen binding and orbital mediated tunneling on the apparent corrugation. J Phys Chem B, 2000, 104:5993-5000.
  • 10Duncan D A, Unterberger W, Hogan K A, et al, A photoelectron diffraction investigation of vanadyl phthalocyanine on Au(111). Surf Sci, 2010, 604:47-53.

共引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部