期刊文献+

Rapid detection of influenza A(H1N1)virus by conductive polymer-based nanoparticle via optical response to virus-specific binding

原文传递
导出
摘要 A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections.In this study,conductive polymer-based nanoparticles have been developed as a tool for rapid diagnosis of influenza A(H1N1)virus.The distinctive property of a conductive polymer that transduces stimulus to respond,enabled immediate optical signal processing for the specific recognition of H1N1 virus.Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles,functionalized with peptides,were fabricated for the specific recognition of H1N1 virus.The low solubility of conductive polymers was successfully improved by employing vesicles consisting of amphiphilic copolymers,facilitating the viral titer-dependent production of the optical response.The optical response of the detection system to the binding event with H1N1,a mechanical stimulation,was extensively analyzed and provided concordant information on viral titers of H1N1 virus in 15 min.The specificity toward the H1N1 virus was experimentally demonstrated via a negative optical response against the control group,H3N2.Therefore,the designed system that transduces the optical response to the target-specific binding can be a rapid tool for the diagnosis of H1N1.
出处 《Nano Research》 SCIE EI CSCD 2022年第3期2254-2262,共9页 纳米研究(英文版)
基金 H.-O.Kim acknowledges support from the National Research Foundation of Korea grant funded by the Korean government(No.NRF-2019R1I1A1A01057005) Evaluation for Technology in Food,Agriculture and Forestry(IPET)through the Animal Disease Management Technology Development Program funded by Ministry of Agriculture,Food and Rural Affairs(MAFRA)(No.320056-2) D.Song acknowledges support from Korea Mouse Phenotyping Project(No.NRF-2019M3A9D5A01102797) Development of African Swine Fever Virus Vaccine and Assessment of Rapid Test Kit(No.NRF-2019K1A3A1A61091813)of the Ministry of Science and ICT through the National Research Foundation S.Haam acknowledges support from Technology Development Project for Biological Hazards Management in Indoor Air Program of Korea Environment Industry&Technology Institute(KEITI)funded by Korea Ministry of Environment(MOE)(No.RE202101004) Nano Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(No.2017M3A7B4041798) This research was also supported by the Bio&Medical Technology Development Program(No.NRF-2018M3A9E2022819) the Bio&Medical Technology Development Program(No.NRF-2018M3A9H4056340) the National Research Foundation(NRF)funded by the Ministry of Science&ICT.
  • 相关文献

参考文献2

二级参考文献27

  • 1Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Flexible light-emitting diodes made from soluble conducting polymers. Nature 1992, 357, 411-419.
  • 2Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K. J.; Samuelson, L. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 1998, 121, 71-78.
  • 3Wang, Y.; Wang, X.; Li, J.; Mo, Z.; Zhao, X.; Jing, X.; Wang, F. Conductive polyaniline/silica hybrids from sol-gel process. Adv. Mater. 2001,13, 1582-1585.
  • 4Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135-145.
  • 5D’Arcy, J. M.; Tran, H. D.; Tung, V. C.; Tucker-Schwartz, A. K.; Wong, R. P.; Yang, Y.; Kaner, R. B. Versatile solution for growing thin films of conducting polymers. Proc. Natl. Acad. Sci. U. S. A. 2010,107, 19673-19678.
  • 6Kamikawa, T. L.; Mikolajczyk, M. G.; Kennedy, M.; Zhang, P.; Wang, W.; Scott, D. E.; Alocilja, E. C. Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains. Biosens. Bioelectron. 2010, 26, 1346-1352.
  • 7Gowda, S. R.; Leela Mohana Reddy, A.; Zhan, X. B.; Ajayan, P. M. Building energy storage device on a single nanowire. Nano Lett. 2011,11, 3329-3333.
  • 8Ma, Y. F.; Zhang, J. M.; Zhang, G. J.; He, H. X. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126, 7097-7101.
  • 9Sun, Q. H.; Bi, W.; Fuller, T. F.; Ding, Y.; Deng, Y. Fabrication of aligned polyaniline nanofiber array via a facile wet chemical process. Macromol. Rapid Commun.2009, 30, 1027-1032.
  • 10Anilkumar, P.; Jayakannan, M. Hydroxyl-functionalized polyaniline nanospheres: Tracing molecular interactions at the nanosurface via vitamin C sensing. Langmuir 2008, 24, 9754-9762.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部