期刊文献+

相关滤波目标跟踪算法鲁棒性提升研究 被引量:2

Research on Improving the Robustness of Correlation Filtering Target Tracking Algorithm
下载PDF
导出
摘要 ECO算法虽然在跟踪效果上有了很大的提升,但是它在复杂场景中表现不好甚至会丢失目标,即鲁棒性不高;对此,文章探讨了怎样在ECO算法中利用深度特征处理深层语义的能力和浅层特征处理纹理颜色信息的能力来提升算法的鲁棒性,同时对比了深度特征和浅层特征在目标跟踪的不同作用,并因此提出了改进方法,首先在深度网络上选择了具有更深层次的ResNet-101网络;其次修改了适宜此网络的参数;算法在OTB-2015进行的实验也取得了比较良好的结果,在低分辨率、背景杂波、光照变化及尺度变化4个挑战因素的成功率分别领先基准算法ECO为0.135,0.034,0.031,0.024。 Although ECO algorithm has greatly improved the tracking effect,there are some shortcomings in complex scenes and even loses the target,and its robustness is not high.In this regard,how to improve the robustness of ECO algorithm is discussed by using the ability of deep feature to process deep semantics and the ability of shallow feature to process texture color information.At the same time,the different functions of depth feature and shallow feature are compared in target tracking,and an improved method is put forwarded,Firstly,the ResNet-101 network with deeper level is selected on the deep network;Secondly,the parameters suitable for this network are modified.The experiment of the algorithm in OTB-2015 also achieved good results,The success rates of low resolution,background clutter,illumination change and scale change are 0.135,0.034,0.031 and 0.024 respectively.
作者 王奇 王录涛 江山 文成江 WANG Qi;WANG Lutao;JIANG Shan;WEN Chengjiang(College of Computer Sciences,Chengdu University of Information Technology,Chengdu 610225,China)
出处 《计算机测量与控制》 2022年第6期210-215,共6页 Computer Measurement &Control
基金 四川省科技厅重点研发项目(2020YFG0442)。
关键词 目标跟踪 深度特征 浅层特征 鲁棒性 复杂场景 visual tracking depth features shallow features robustness complex scene
  • 相关文献

参考文献9

二级参考文献81

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献2442

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部