期刊文献+

基于熵权法和CART决策树的量化选股策略 被引量:2

Quantitative Stock Selection Strategy Based on Entropy Method and CART Decision Tree
下载PDF
导出
摘要 本文以粤港澳大湾区的30支股票为研究样本,结合券商研报运用熵权法综合考虑多层面因素建立影响股票走势的特征指标体系并探究其对公司股票走势的影响。经检验,从短期来看:资本市场处于弱式,且并不总是有效的;从中长期来看:只有市场整体、估值因子对股票走势有显著负向影响,其他指标未证实与回报率有相关关系。根据特征指标体系建立基于CART决策树的选股模型,随机抽取两组股票进行模型测试与检验,为投资者提供更优的选股策略。考虑外部环境因素对股票走势的作用机制后引入基于新冠疫情的稳定能力因子完善特征指标体系,以此进一步优化选股模型并对决策结果进行测试与检验。 This paper uses 30 stocks in the Guangdong-Hong Kong-Macao Greater Bay Area as a research sample,combined with the research reports of securities companies, using the entropy method to comprehensively consider multiple factors to establish a characteristic index system that affects the stock trend and explore its impact on the company’s stock trend. After testing, from a short-term perspective: the capital market is weak and not always effective;from a mid-to-long term perspective: only the overall market and valuation factors have a significant negative impact on stock trends. A stock selection model based on the CART decision tree is established according to the characteristic index system, and two sets of stocks are randomly selected for model testing and verification, so as to provide investors with better stock selection strategies. Taking into account the mechanism of external environmental factors on stock trends, the stable capability factor based on the COVID-19 is introduced to improve the characteristic index system, so as to further optimize the stock selection model and test and verify the decision-making results.
作者 雷乐 李子祎 殷炼乾 LEI Le;LI Zi-yi;YIN Lian-qian(International Business School,Jinan University,519000,Zhuhai,Guangdong,China)
出处 《特区经济》 2022年第5期114-118,共5页 Special Zone Economy
基金 国家社会科学基金项目“数字货币的跨境反洗钱监管研究”(项目编号:21BGL264) 校级大学生创新创业训练计划项目“董事高管责任保险与企业创新——基于中国制造业上市公司的实证分析”(项目编号:CX21401)。
关键词 熵权法 决策树选股模型 CART算法 机器学习 Entropy Method Stock Selection Model Based On Decision Tree Cart Algorithm Machine Learning
  • 相关文献

共引文献2

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部