期刊文献+

Real-time tool condition monitoring method based on in situ temperature measurement and artificial neural network in turning

原文传递
导出
摘要 Tool failures in machining processes often cause severe damages of workpieces and lead to large quantities of loss,making tool condition monitoring an important,urgent issue.However,problems such as practicability still remain in actual machining.Here,a real-time tool condition monitoring method integrated in an in situ fiber optic temperature measuring apparatus is proposed.A thermal simulation is conducted to investigate how the fluctuating cutting heats affect the measuring temperatures,and an intermittent cutting experiment is carried out,verifying that the apparatus can capture the rapid but slight temperature undulations.Fourier transform is carried out.The spectrum features are then selected and input into the artificial neural network for classification,and a caution is given if the tool is worn.A learning rate adaption algorithm is introduced,greatly reducing the dependence on initial parameters,making training convenient and flexible.The accuracy stays 90%and higher in variable argument processes.Furthermore,an application program with a graphical user interface is constructed to present real-time results,confirming the practicality.
出处 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第1期84-98,共15页 机械工程前沿(英文版)
基金 The authors acknowledge the financial support from the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B090927002).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部