摘要
为了促进可再生能源的开发和利用,中国正在加快制定可再生能源投资组合标准。在此背景下,结合某边防哨所所在地区气候、用电特点以及现有的技术条件为研究背景,利用先进的风光互补热电联供技术,提出一种计及绿色交易证书的冷热电联供系统的经济模型。该模型以机组容量配置作为控制变量,并针对系统中优化问题复杂、约束条件较多,算法前期探索能力不足的问题,对算法进行改进,通过一种改进的灰狼算法求解各机组经济最优容量配置,分析出不同绿色证书交易价格对系统运行的影响。最后通过算例仿真验证了所提模型和算法的有效性和可行性,研究结果可为完善可再生能源配额制度以及含可再生能源的冷热电联供系统应用到边防哨所提供参考和依据。
In order to promote the development and utilization of renewable energy,China is speeding up the formulation of renewable energy portfolio standards.Under this background,the climate,electricity consumption characteristics and the existing technical conditions of the area where a border post is located are combined as the research background.The advanced technology of″wind⁃solar complementary heating and power cogeneration″is used to put forward an economic model of the CCHP(combined cooling,heating and power)that takes account of the green transaction certificate.In terms of this model,the unit capacity configuration is taken as the control variable.In addition,in view of the complex optimization problems,many constraints and insufficient exploration ability in the early stage of the algorithm,the algorithm is improved.An improved grey wolf optimization(GWO)algorithm is used to solve the economic optimal capacity allocation of each unit,and the influence of different green certificate transaction prices on system operation is analyzed.The validity and feasibility of the proposed model and algorithm are verified by simulation examples.The research results can provide reference and basis for improving the renewable energy quota system and applying the CCHP system containing renewable energy to border posts.
作者
柴桂安
武家辉
王帅飞
张强
CHAI Gui’an;WU Jiahui;WANG Shuaifei;ZHANG Qiang(School of Electrical Engineering,Xinjiang University,Urumqi 830047,China;State Grid Xinjiang Integrated Energy Service Co.,Ltd.,Urumqi 830011,China)
出处
《现代电子技术》
2022年第13期124-128,共5页
Modern Electronics Technique
基金
新疆维吾尔自治区自然科学基金项目(2020D01C068)。
关键词
冷热电联供
可交易证书
经济性分析
风光出力
电价
目标函数
灰狼优化算法
CCHP
tradable green certificate
economic analysis
wind⁃solar output
electricity price
objective function
GWO algorithm