摘要
群体性事件的频繁发生对我国社会稳定有序发展造成严重影响。深入理解群体性事件频发的原因,挖掘群体性事件治理困境并形成学理逻辑,对于提高政府应对群体性事件能力,优化决策过程具有重要意义。本文基于社会学习理论,以81例邻避型群体事件为研究对象,建立事件学习网络,进行网络关键事件识别和网络学习特征分析。研究发现,已发生事件的示范效应对同类事件的发展过程产生深刻影响;具有类似特征的事件更容易被学习;群体性事件之间的学习过程促进了认知固化。研究结论对于提高政府应对群体性事件中组织学习的有效性、探索政府决策的主动学习路径、提高政府社会治理能力等方面提供了借鉴和启示。
The frequent occurrence of mass incidents has a serious impact on the stable and orderly development of our society. An in-depth understanding of the causes of the frequent occurrence of mass incidents, the excavation of the dilemma of mass incident governance, and the formation of a doctrinal logic are of great significance to improve the government’s ability to respond to mass incidents and optimize the decision-making process. Based on social learning theory, this paper establishes an event learning network with 81 cases of mass incidents caused by NIMBY and conducts network key event identification and network learning feature analysis. The study found that the demonstration effect of an event that has already occurred has a profound impact on the development process of similar events;events with similar characteristics are more likely to be learned;the learning process between group events promotes cognitive solidification. The findings of the study provide references and insights for improving the effectiveness of organizational learning in government response to mass incidents, exploring active learning paths for government decision-making, and improving the government’s social governance capacity.
作者
康伟
曹太鑫
KANG Wei;CAO Taixin(College of Politics and Public Administration,Tianjin Normal University,Tianjin 300387,China;School of Economics and Management^Harbin Engineering University,Harbin 150001,China)
出处
《中国软科学》
CSSCI
CSCD
北大核心
2022年第3期133-140,共8页
China Soft Science
基金
国家自然科学基金项目“城镇化背景下邻避危机发展演化机理及协同治理网络研究”(71774038)
黑龙江省自然科学基金项目“面向城市公共安全的韧性社区评估研究”(LH9G015)。
关键词
群体性事件
社会学习
学习网络
邻避事件
mass incidents
social learning
social learning networks
NIMBY events