期刊文献+

Sr(BiSm)_(2)Ta_(2)O_(9)多晶陶瓷的制备和性能研究

Preparation and properties of Sr(BiSm)_(2)Ta_(2)O_(9) polycrystalline ceramics
下载PDF
导出
摘要 采用低温熔盐合成方法制备了多晶Sr(BiSm)_(2)Ta_(2)O_(9)(SBSmT)陶瓷。X射线粉末衍射结果证实了所制备陶瓷中单相钙钛矿晶体结构的存在。SEM研究表明,SBSmT陶瓷具有片状形貌特征,烧结球团的平均晶粒尺寸在0.6~0.8μm之间,烧结时间对组织没有明显影响,但晶粒尺寸略有增大。介电和电导率研究结果表明,在1050℃烧结10h的SBSmT陶瓷在100kHz的介电常数(ε_(r)=76)高于其他烧结时间的陶瓷。在300K时,陶瓷的电导率为10^(-7)~10^(-9) S·cm^(-1),表明导电机制可能是由于氧离子空位的迁移。未掺杂钐的SBT陶瓷的剩余极化和矫顽力场随频率的增加而减小,而掺10(mol)%钐的SBSmT陶瓷的剩余极化和矫顽力场随频率从100Hz增加到1000Hz,没有明显变化。 Polycrystalline Sr(BiSm)_(2)Ta_(2)O_(9)(SBSmT)ceramics were prepared by low temperature molten salt synthesis.X-ray powder diffraction results confirm the existence of single-phase perovskite crystal structure in the prepared ceramics.The SEM study showed that the SBSmT ceramics have the characteristics of flake morphology,and the average grain size of sintered pellets is between 0.6μm and 0.8μm.Sintering time has no obvious effect on the microstructure,but the grain size increases slightly.The results showed that the dielectric constant(ε_(r)=76)of SBSmT ceramics sintered at 1050℃for 10h at 100kHz is higher than that of other ceramics sintered at 1050℃for 10h.At 300K,the conductivity of the ceramic is 10^(-7)~10^(-9) S·cm^(-1),indicating that the conduction mechanism may be due to the migration of oxygen ion vacancies.The residual polarization and coercive electric field of SBT ceramics without samarium doping decreased with the increase of frequency,while the residual polarization and coercive electric field of SBSmT ceramics with 10(mol)%samarium doping did not change significantly with the increase of frequency from 100Hz to 1000Hz.
作者 宋俊武 SONG Jun-wu(Chaozhou Third Ring(Group)Co.,Ltd.,Chaozhou 521000,China)
出处 《化学工程师》 CAS 2022年第6期15-19,11,共6页 Chemical Engineer
基金 2019年广东省重点领域研发计划项目“5G通信基站用高容量MLCC”(No.2019B121204001)成果之一。
关键词 低温熔盐法 SBSmT 介电常数 low-temperature molten salt method SBSmT dielectric constant
  • 相关文献

参考文献9

二级参考文献95

  • 1吴秀梅,吕笑梅,朱劲松.应力对铋系铁电薄膜性能影响的研究进展[J].物理学进展,2006,26(3):490-494. 被引量:6
  • 2Newkirk H W,Quadflieg P,J Liebertz.et al.Ferro electrics,1972,4,5.
  • 3Teller R G,Brazdil J F,Grasselli R K.Acta Crystar Sect C,1984,4:2001.
  • 4Aurivillius B.Kemi Ark,1952,5,39.
  • 5Subbarao E C.J Phys Chem Solids,1962,23,665.
  • 6Shi Y H,Feng S H,Cao C S.Mater Lett,2000,44,215.
  • 7Hiroshi K,Fujio I.Akiteru W J of Solid State Chem,1981,36,349.
  • 8Zhen H L,Kai B T,Qian S,et al.Hua G Z,J Solid State Chem,2008,181,964.
  • 9Aurivillius B,Fang P H,Phys Rev,1962,126,893.
  • 10Utkin V I,Roginsksya Y E,Voronkova V I,et al.Phys.Status Solidi A,1980,59,75.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部