期刊文献+

面向批量精密装配的显微特征定位 被引量:1

Microscopic feature localization for mass precision assembly tasks
下载PDF
导出
摘要 基于显微机器视觉的特征定位是精密装配中重要的一环,批量精密装配中装配状态不同导致特征定位错误,使流程中断进而影响装配效率,因此需要建立强鲁棒性的特征定位算法。提出一种融合方向梯度直方图特征和局部二值模式特征的支持向量机模型,并采用金字塔搜索策略提高识别效率,实现显微特征定位。在自行研制的精密自动装配设备上进行性能测试,采集不同特征进行支持向量机的训练,研究了纹理和光照等干扰因素对定位稳定性和精度的影响,并进行定位精度实验及某组件批量装配。实验结果表明:利用本方法提取目标特征位置,在多种条件下均具有良好的单峰性和重复精度,识别准确率达到98%,定位精度优于4μm,装配精度优于7μm。本方法能够满足实际批量生产中不同装配条件下的定位需求,为自动化精密装配定位提供了有效的解决方案。 Feature localization based on microscopic vision is important for precision assembly. Because assembly states vary in a batch assembly,feature positioning errors often arise,which significantly interrupt the process and affect efficiency. Therefore,establishing a solid and robust feature localization algorithm is crucial. This paper proposes a support vector machine(SVM)model for synthesizing gradient histograms and local binary patterns. Furthermore,the pyramid search strategy is employed to improve the recognition efficiency and realize the micro-feature localization method. Performance verification and heuristic application are conducted on self-developed precision automatic assembly equipment,and different features are collected for SVM training. The influences of interference factors such as texture and illumination on the positioning stability are investigated in detail. Additional experiments regarding the positioning accuracy and actuator component assembly are performed. Under various conditions,the proposed approach presents good unimodal,repetitive accuracy and robustness. A recognition accuracy rate of 98% can be achieved. The positioning accuracy is better than 4 μm,and the actual assembly accuracy is better than 7 μm. The feature localization method can meet the localization requirements under different assembly conditions in real batch production and provides an effective solution for precision automatic assembly localization.
作者 王晓东 于忠洋 徐征 卢世勤 崔世鹏 WANG Xiaodong;YU Zhongyang;XU Zheng;LU Shiqin;CUI Shipeng(School of Mechanical Engineering,Dalian University of Technology,Dalian 116023,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2022年第11期1353-1361,共9页 Optics and Precision Engineering
基金 国家重点研发计划资助项目(No.2019YFB1310901) 辽宁省兴辽英才计划资助项目(No.XLYC2002020)。
关键词 精密装配 特征定位 显微视觉 支持向量机 precision assembly feature localization microscopic vision support vector machine
  • 相关文献

参考文献4

二级参考文献48

  • 1薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 2施发表,韦嘉瑚,王占立,李果珍.正常和良性增生前列腺的高场强磁共振成像特征[J].中华老年医学杂志,1997,16(2):79-82. 被引量:8
  • 3Bay H, Ess A, Tuytelaars T, et al.Speeded-Up Robust Features (SURF) [J].Computer Vision and Image Understanding, 2008, 110(3) :346-359.
  • 4Luo J, Oubong G.SURF applied in panorama image stitching[C]// 2010 2nd International Conference on Image Processing Theory Tools and Applications.[S.1.] : IEEE, 2010: 495-499.
  • 5Geusebroek J M ,Boomgaard R.Color Invariance[J].IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2001, 23(12):1338-1350.
  • 6Gonzalez R C,Woods R E,Steven L E.Digital image pro- cessing using MATLAB[M].Beijing:Publishing House of Elec- tronics Industry, 2005 : 58-60.
  • 7Geusebroek J M, Burghouts G J, Smeulders A W.The Am- sterdam library of object images[J],Intemational Journal of Computer, 2005,61 ( 1 ) : 103-112.
  • 8Burghouts G J, Geusebroek J M.Performance evaluation of local colour invariants[J].Computer Vision and Image Under- standing, 2009, I 13 ( i ) : 48-62.
  • 9Lowe D G.Distinctive Image Features from Scale-Invariant Keypoints[J].Intemational Journal of Computer Vision, 2004, 60(2) :91-110.
  • 10Fischler M A,Bolles R C.Random sample eonsensus:a par- adigm for model fitting with applications to image analysis and automated cartography[J].Communication of ACM, 1981, 24(6) :381-395.

共引文献38

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部