期刊文献+

基于TD3的电动汽车复合电源能量管理策略研究 被引量:1

TD3-based energy management strategy for hybrid energy storage system of electric vehicle
下载PDF
导出
摘要 将蓄电池与超级电容组成复合电源系统并结合有效的能量管理策略,能显著提高能量利用率,延长储能系统的使用寿命。为了实现复合电源系统能耗损失的最小化,设计了一种基于双延迟深度确定性策略梯度(TD3)算法的能量管理策略。与深度确定性策略梯度(DDPG)算法相比,该算法解决了Q值过高估计问题,能耗损失更小。利用电动汽车行驶方程式和复合电源系统等效电路模型,搭建了基于TD3算法的MATLAB/Simulink仿真模型,并进行测试。仿真结果显示,所提出的能量管理策略能降低大电流对蓄电池的冲击,与DDPG算法相比,能量利用率提高了1.36%,蓄电池峰值电流输出降低了14.68%,蓄电池温升降低了3.52%,系统总能耗降低了2.17%。 Combining batteries and super capacitors into a composite power system(CPS)with an effective energy management strategy can significantly improve the energy utilization,and increase the service life of the energy storage system.To minimize the energy loss of the system,an energy management strategy based on the twin delayed deep deterministic policy gradient(TD3)algorithm was designed.Compared with the deep deterministic policy gradient(DDPG)algorithm,TD3 algorithm solved the problem of overestimation of Q value and less energy loss.A MATLAB/Simulink simulation model based on the TD3 algorithm was built,and tested with the electric vehicle driving equation and the equivalent circuit model of CPS.The outcomes indicate that the proposed energy management strategy can effectively reduce the impact of high current on the battery,and compared with DDPG algorithm,the energy utilization efficiency is improved by 1.36%,the peak of output current of the battery is reduced by 14.68%,the temperature rise of the battery is reduced by 3.52%,the total energy consumption of the system is reduced by 2.17%.
作者 刘家成 张向文 LIU Jiacheng;ZHANG Xiangwen(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Key Laboratory of Automatic Detection Technology and Instruments,Guilin 541004,China)
出处 《智能科学与技术学报》 2022年第2期277-287,共11页 Chinese Journal of Intelligent Science and Technology
基金 国家自然科学基金资助项目(No.51465100) 广西自然科学基金资助项目(No.2018GXNSFAA281282) 广西自动检测技术与仪器重点实验室基金资助项目(No.YQ17110) 桂林电子科技大学研究生教育创新计划资助项目(No.2021YCXS120)。
关键词 电动汽车 复合电源系统 能量管理 深度强化学习 electric vehicle composite power system energy management deep reinforcement learning
  • 相关文献

参考文献7

二级参考文献58

共引文献79

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部