摘要
协同过滤算法作为各种商业推荐技术最常使用的方法之一。然而,由于数据的稀疏性和用户的评分存在单一的相似性,低精度相似度度量降低了推荐系统的性能。针对上述问题,提出了一种协同过滤改进方法。方法基于项目的分类属性,以用户的兴趣度量用户的相似度,量化用户的兴趣所发生的动态迁移,构建新的相似度量模型。Movielens测试结果表明,提出的算法缓解了数据稀疏性,优化了最近邻的选取,与传统算法相比有着更高的推荐精度。
Collaborative filtering algorithm is one of the most commonly used methods in various commercial recommendation technologies.However,due to the sparsity of the data and the single similarity of the user’s score,the performance of the recommendation system is reduced by the low precision similarity measurement.Aiming at the above problems,an improved collaborative filtering method is proposed.Based on the classification attributes of items,the algorithm measures the similarity of users with their interests,quantifies the dynamic migration of users’ interests,and constructs a new similarity measurement model.Movielens test results show that the proposed algorithm alleviates the data sparsity and has higher recommendation accuracy than traditional algorithms.
作者
李豆豆
汪学明
LI Dou-dou;Wang Xue-ming(College of Computer Science and Technology,Guizhou University,Guiyang Guizhou 550000,China)
出处
《计算机仿真》
北大核心
2022年第5期304-308,469,共6页
Computer Simulation
基金
国家自然科学基金项目(61163049)
贵州省自然科学基金资助项目(黔科合J字(7641))。
关键词
协同过滤
项目分类属性
相似度度量
数据稀疏性
用户兴趣变化
Collaborative filtering
Item classification attribute
Similarity measure
Data sparsity
User interest change