期刊文献+

无能隙量子自旋液体和正方晶格自旋1/2阻挫反铁磁模型的相图 被引量:1

Gapless quantum spin liquid and global phase diagram of the spin-1/2 J_(1)-J_(2) square antiferromagnetic Heisenberg model
原文传递
导出
摘要 自高温超导发现以来,正方晶格上由自旋为1/2构成的包括近邻和次近邻海森堡相互作用的阻挫反铁磁模型,即J1±J2模型,因其基态被认为可以作为铜基超导的母态,在过去30多年中得到了广泛关注和深入研究.该模型包含的相互作用形式简单,如今也成为用来研究正方晶格上阻挫磁性的基本理论模型.但其基态性质仍然是一个悬而未决的问题.本文作者利用最近发展的二维张量网络态算法,对该模型进行了迄今为止精度最高的计算.详细的数值结果表明这个体系的基态包含了一个无能隙的量子自旋液体和价键固体态.他们进一步计算了相变的临界指数,提出了一个低能有效理论来描述这个量子自旋液体,并探讨了这个量子自旋液体与解禁闭量子临界性的关系.该工作通过仔细比较二维张量网络态和人们常用的密度矩阵重整化群两种算法的结果,提供了在正方晶格阻挫磁性体系的研究上第一个超越密度矩阵重整化方法的例子.他们也解释了以前研究结果矛盾之处的来源,为用二维张量网络态解决量子多体问题提供了一个范本. The nature of the zero-temperature phase diagram of the spin-1/2 J_(1)-J_(2)Heisenberg model on a square lattice has been debated in the past three decades,and it remains one of the fundamental problems unsettled in the study of quantum many-body theory.By using the state-of-the-art tensor network method,specifically,the finite projected entangled pair state(PEPS)algorithm,to simulate the global phase diagram of the J_(1)-J_(2)Heisenberg model up to 24×24 sites,we provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid(QSL),whose spin-spin and dimer-dimer correlations both decay with a power law behavior.There also exists a valence-bond solid(VBS)phase in a very narrow region 0.56■J_(2)/J_(1)≤0.61 before the system enters the well known collinear antiferromagnetic phase.We stress that we make the first detailed comparison between the results of PEPS and the well-established density matrix renormalization group(DMRG)method through one-to-one direct benchmark for small system sizes,and thus give rise to a very solid PEPS calculation beyond DMRG.Our numerical evidences explicitly demonstrate the huge power of PEPS for highly frustrated spin systems.Finally,an effective field theory is also proposed to understand the physical nature of the discovered gapless QSL and its relation to deconfined quantum critical point(DQCP).
作者 刘文渊 龚寿书 李毓彬 Didier Poilblanc 陈伟强 顾正澄 Wen-Yuan Liu;Shou-Shu Gong;Yu-Bin Li;Didier Poilblanc;Wei-Qiang Chen;Zheng-Cheng Gu(Department of Physics,The Chinese University of Hong Kong,Hong Kong,China;Department of Physics,Beihang University,Beijing 100191,China;Laboratoire de Physique Théorique,C.N.R.S.and Universitéde Toulouse,Toulouse 31062,France;Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China;Department of Physics and Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China;International Quantum Academy,and Shenzhen Branch,Hefei National Laboratory,Shenzhen 518040,China)
出处 《Science Bulletin》 SCIE EI CSCD 2022年第10期1034-1041,M0004,共9页 科学通报(英文版)
基金 supported by the National Natural Science Foundation of China(NSFC)/RGC Joint Research Scheme No.N-CUHK427/18 the ANR/RGC Joint Research Scheme No.A-CUHK402/18 from the Hong Kong’s Research Grants Council the TNSTRONG ANR-16-CE30-0025,TNTOP ANR-18CE30-0026-01 grants awarded from the French Research Council supported by the NSFC(11874078 and 11834014) the Fundamental Research Funds for the Central Universities supported by the NSFC(11861161001) the Science,Technology and Innovation Commission of Shenzhen Municipality(ZDSYS20190902092905285) Guangdong Basic and Applied Basic Research Foundation(2020B1515120100) Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation(HZQB-KCZYB-2020050) Center for Computational Science and Engineering at Southern University of Science and Technology。
  • 相关文献

参考文献2

共引文献5

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部