期刊文献+

基于时变copula互信息的肌间耦合分析 被引量:1

Time-Varying Copula Mutual Information for Intermuscular Coupling Analysis
下载PDF
导出
摘要 如何准确、合理地衡量中枢神经系统调控下的肌间耦合关系,是一个富有挑战性的研究课题。在时变copula函数的基础上,通过与熵理论相结合,提出一种时变copula互信息估计方法,并将其应用于10名被试腕屈、腕展运动过程中,肱二头肌(BB)和肱三头肌(TB)记录的表面肌电(sEMG)信号在theta、alpha、beta等特征频段的耦合分析,同时对照静态copula函数验证其有效性,所用数据源自Ninapro DB4。实验结果表明,较之静态copula函数,时变copula函数对肌间相依结构的拟合优度更高,由时变copula互信息描述的肌间耦合强度存在显著的频段差异(P<0.05),具体表现为频段越高肌间耦合强度越低(腕屈:0.075 7~0.214 7 bit;腕展:0.078 0~0.237 3 bit),而静态copula互信息严重地低估肌间耦合强度。时变copula互信息为肌间耦合分析提供一种先进的理论指导方法,具有广阔的应用前景。 To measure the relationship between different muscles accurately and reasonably under the regulation of central nervous system is a challenging research topic. Based on the time-varying copula function and combining with the entropy theory, a time-varying copula mutual information(MI) estimation method was proposed in this paper and applied it to the coupling analysis of sEMG signals of biceps brachii(BB) and triceps brachii(TB) in the characteristic frequency bands(theta, alpha and beta) during wrist flexion(WF) and wrist extension(WE) movement of 10 subjects. Meanwhile, the method was compared with the static copula function to verify its effectiveness. The data we used were derived from Ninapro DB4. Experimental results show that compared to the static copula function, the time-varying copula function has a better fitting degree for the intermuscular dependent structure. There was a significant frequency band difference in the intermuscular coupling strength described by the time-varying copula MI(P<0.05), which was specifically expressed as: the higher the frequency band, the lower the intermuscular coupling strength(WF: 0.075 7~0.214 7 bit. WE: 0.078 0~0.237 3 bit), while the static copula MI incorrectly underestimates the intermuscular coupling strength. In conclusion, the time-varying copula MI provided an advanced theoretical guidance method for intermuscular coupling analysis and showed a very broad application prospect.
作者 王洪安 佘青山 马玉良 孔万增 田玉平 Wang Hongan;She Qingshan;Ma Yuliang;Kong Wanzeng;Tian Yuping(School of Automation(School of Arificial Intelligence),Hangzhou Dianzi University,Hangzhou 310018,China;Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province,Hangzhou 310018,China)
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第2期140-150,共11页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61871427,62071161) 山东省重点研发计划(重大科技创新工程)项目(2019JZZY021005)。
关键词 时变copula函数 相依结构 互信息 特征频段 肌间耦合 time-varying copula function dependent structure mutual information characteristic frequency band intermuscular coupling
  • 相关文献

参考文献6

二级参考文献67

  • 1王耀兵,季林红,黄靖远.偏瘫患者与健康人上肢表面肌电信号比较研究[J].生物医学工程学杂志,2004,21(z1):129-130. 被引量:3
  • 2De la Pe a V,Ibragimov R,Sharakhmetov S.Characteriza-tions of joint distributions,copulas,information,depend-ence and decoupling,with applications to time series. . 2006
  • 3Davy M,Doucet A.Copulas: A new insight into positive time-frequency distributions. IEEE Signal Processing Let-ters . 2003
  • 4Jenison R,Reale R.The shape of neural dependence. Neu-ral Computation . 2004
  • 5Kraskov A,St gbauer H,Grassberger P.Estimating mutual information. Physical Review . 2004
  • 6Shannon CE.A mathematical theory of communication. Bell System Technical Journal, The . 1948
  • 7Cover TM,Thomas JA.Elements of Information Theory. . 1991
  • 8Sklar A.Fonctions de repartition a’n dimensions et leurs marges. . 1959
  • 9Silverman BW.Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability . 1986
  • 10J Beirlant,E Dudewicz,L Gyorfi,E Meulen.Nonparametric entropy estimation: an overview. Int J Math Stat Sci . 1997

共引文献48

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部