期刊文献+

融合感受野模块的卷积神经网络视杯视盘联合分割 被引量:4

Joint Optic Cup and Disc Segmentation Using Convolutional Neural Network with Receptive Field Module
下载PDF
导出
摘要 青光眼是世界第一大不可逆致盲性眼病,早期诊断和及时治疗是预防青光眼致盲的有效措施。眼底图像中的杯盘比是青光眼早期筛查与临床诊断的重要指标。因此,精确的视杯视盘分割是准确计算杯盘比并提高青光眼计算机辅助诊断技术的关键。针对这一问题,在对眼底图像进行极坐标变换的基础上,提出一种融合感受野模块的卷积神经网络Seg-RFNet,以实现视杯视盘联合分割。Seg-RFNet以SegNet框架为基础,使用ResNet50作为编码层,增强图像的特征提取能力,并对编码层进行分支处理,进一步获得更多的深层语义信息;同时在编码层和解码层之间加入感受野模块,模拟人类视觉系统,在增大感受野的同时增强了有用特征的响应。使用MICCAI 2018公开数据集REFUGE中的800张眼底图像对所提出方法与其他方法进行性能验证和比较。结果表明,Seg-RFNet分割视杯和视盘的Jaccard相似度分别0.951 5和0.872 0,F分数达到了0.974 9和0.930 1,与常用的U-Net、SegNet网络相比,Seg-RFNet具有更好的视杯视盘联合分割精度,为计算杯盘比提供了精确分割基础。 Glaucoma is the world′s largest irreversible blindness eye disease. Early diagnosis and timely treatment are effective measures to prevent blindness caused by glaucoma. The cup to disc ratio in fundus images is an important index of early screening and clinical diagnosis of glaucoma. Therefore, accurate segmentation of the optic cup and disc is the key to accurately calculate the cup to disc ratio and improve the computer-aided diagnosis technology of glaucoma. To solve this problem, this paper firstly performed a polar coordinate transformation preprocessing on the fundus image, and then proposed a convolutional neural network Seg-RFNet that integrated the receptive field module to achieve joint segmentation of the optic cup and disc. Seg-RFNet was based on SegNet framework and used ResNet50 as the coding layer to enhance the feature extraction ability of the image, and the coding layer was branched to obtain more deep semantic information. At the same time, the receptive field module was added between the coding layer and decoding layer, which was able to simulate the human visual system, increasing the receptive field and enhance the response of useful features. The 800 fundus images from REFUGE that is a dataset published in MICCAI 2018, were used to verify the performance of the proposed method compared with other methods. The results showed that the Jaccard Similarity(higher is better) of the optic cup and disk segmentation was 0.9515 and 0.8720, and the F score(higher is better) was 0.9749 and 0.9301, respectively. Compared with the commonly used U-Net, SegNet and other networks, Seg-RFNet showed better joint segmentation accuracy of the optic cup and disc and provided an accurate segmentation basis for calculating the cup to disc ratio.
作者 于舒扬 袁鑫 郑秀娟 Yu Shuyang;Yuan Xin;Zheng Xiujuan(Departmernt of Automation,College of Elecrical Engineering,Sichuan Unitersity,Chengdu 610065,China)
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第2期167-176,共10页 Chinese Journal of Biomedical Engineering
基金 成都市技术创新研发项目(2020-YF05-01386-SN)。
关键词 卷积神经网络 眼底图像 视杯分割 视盘分割 青光眼筛查 convolutional neural network fundus image optic cup segmentation optic disc segmentation glaucoma screening
  • 相关文献

参考文献5

二级参考文献35

  • 1朱琳琳,唐延东.基于眼底特征的视盘自动检测[J].仪器仪表学报,2010,31(增刊1):118-122.
  • 2Abdel-Razik Youssif AAH,Ghalwash AZ,Abdel-Rahman Ghoneim AAS.Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter[J].lEEETransMedImaging,2008,27(1):11-18.
  • 3Qureshi RJ,Kovacs L,Harangi B,et al.Combining algorithms for automatic detection of optic disc and macula in fundus images[J].Computer Vision and Image Understanding,2012,116 (1):138-145.
  • 4Sinthanayothin C,Boyce JF,Cook HL,et al.Automated localisation of the optic disc,fovea,and retinal blood vessels from digital colour fundus images[J].British Journal of Ophthalmology,1 999,83 (8):902-910.
  • 5Walter T,Klein JC.Segmentation of color fundus images of the human retina:Detection of the optic disc and the vascular tree using morphological techniques[M]//Medical Data Analysis.BerLin:Springer Berlin Heidelberg,2001:282-287.
  • 6Li Huihua,Chutatape O.Automatic location of optic disk in retinal images[C]//Proceedings of International Conference on Image Processing.Thessaloniki:IEEE,2001,2:837-840.
  • 7Lalonde M,Beaulieu M,Gagnon L.Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching[J].IEEE Trans Med Imaging,2001,20 (11):1193-1200.
  • 8Hoover A,Goldbaum M.Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels[J].IEEE Trans Med Imaging,2003,22(8):951-958.
  • 9Foracchia M,Grisan E,Ruggeri A.Detection of optic disc in retinal images by means of a geometrical model of vessel structure[J].IEEETransMed Imaging,2004,23(10):1189-1195.
  • 10Niemeijer M,Abràmoff MD,van Ginneken B.Fast detection of the optic disc and fovea in color fundus photographs[J].Medical image analysis,2009,13 (6):859-870.

共引文献206

同被引文献12

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部