期刊文献+

非马尔科夫环境中各向异性海森堡自旋链的量子失协

Quantum Discord of Heisenberg XYZ Spin Chain in Non-Markovian Environment
原文传递
导出
摘要 利用量子失协方法研究在非马尔科夫环境中具有时变磁场的两比特各向异性海森堡XYZ模型量子失协的动力学演化。海森堡XYZ系统的初始态为最大纠缠态丨ψ_(AB)〉=(1/√2)(|11>+|00>),利用非马尔科夫量子态扩散方法解析求解非马尔科夫主方程,得出系统的约化密度矩阵;然后代入量子失协公式得出系统量子失协的演化动力学。讨论自旋耦合强度、环境关联系数γ和余弦磁场强度B对量子失协动力学的影响。研究发现:当环境关联系数γ较小时,系统的量子失协明显呈现上升趋势,因此可以表明非马尔科夫环境具有增加系统量子失协的作用。同时较大的自旋耦合系数J和J;以及余弦磁场强度B也具有增加系统量子失协的作用。 We study dynamical evolution of quantum discord of a two-bit anisotropic Heisenberg XYZ model in a cosine magnetic field using a quantum discord method.With the maximum entangled state丨ψ_(AB)〉=(1/√2)(|11>+|00>)as the initial state of the Heisenberg XYZ spin chain,the non-Markovian master equation is solved analytically with the non-Markovian quantum state diffusion method and the reduced density matrix of anisotropic Heisenberg XYZ is obtained;Then we bring it into the quantum discord formula to derive evolution dynamics of quantum discord of the system.It is found that as the environmental correlation coefficientγis small,quantum discord of the system obviously shows an upward trend.It shows that the non-Markovian environment has a positive effect on the quantum discord of the system.Greater spin coupling coefficient J,J;and cosine magnetic field intensity increase the quantum discord as well.
作者 唐诗生 艾合买提·阿不力孜 TANG Shisheng;AHMAT Abliz(School of Physics and Electronic Engineering,Xinjiang Normal University,Urumchi,Xinjiang 830054,China)
出处 《计算物理》 CSCD 北大核心 2022年第2期165-172,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11864042)资助项目。
关键词 非马尔科夫量子态扩散方法 量子失协 non-Markovian quantum state diffusion method quantum discord
  • 相关文献

参考文献5

二级参考文献32

  • 1王兴元,段朝锋.一种基于遍历性的混沌加密新算法[J].计算物理,2006,23(5):621-625. 被引量:3
  • 2Ai Q, Wang Y D, Long G L, Sun C P.2009.Sci. China-Phys. Mech. Astron.,52,1898.
  • 3Xu G F, Kwek L C, Tong D M.2012.Sci. China-Phys. Mech. Astron.,55,808.
  • 4Ma X S, Ren M F, Zhao G X.2011.Sci. China-Phys. Mech. Astron.,54,1833.
  • 5Qian Y, Zhang Y Q, Xu J B.2012.Chin. Sci. Bull.,57,1637.
  • 6Wu R B, Zhang J, Li C W, Long G L, Tarn T J.2012.Chin. Sci. Bull.,57,2194.
  • 7Yu T, Eberly J H.2004.Phys. Rev. Lett. 93 140404.
  • 8Yu T, Eberly J H.2009.Science 323 598.
  • 9Zhang Y J, Man Z X, Xia Y J, Guo G C.2010.Eur. Phys. J. D,58,397.
  • 10Bellomo B, Franco R L, Maniscalco S, Compagno G.2008.Phys. Rev. A 78 060302.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部