期刊文献+

求解逻辑回归问题的多层邻近拟牛顿算法

An multi-level proximal quasi-Newton algorithm for solving logistic regression problems
下载PDF
导出
摘要 针对逻辑回归问题,基于多层优化思想和邻近拟牛顿算法,提出一种求解该问题的多层邻近拟牛顿算法。先构造粗糙模型,再根据粗糙条件判断选择执行粗糙步或邻近拟牛顿步。此外,为节省计算量,该算法给出一个合理的目标函数二阶近似,并近似求解子问题。数值结果表明,该算法在求解逻辑回归问题时是有效的。 Aiming at the logistic regression problem,based on the idea of multi-level optimization and proximal quasi-Newton algorithm,a multi-level proximal quasi-Newton algorithm is proposed to solve this problem.The algorithm first constructs a coarse model,and then the algorithm executes the coarse steps or proximal quasi-Newton steps through the coarse conditions.And in order to save the computations costs,the algorithm gives a reasonable second-order approximation to the objective function and solves the sub-problems approximately.The final numerical results show that the algorithm is effective in solving the logistic regression problems.
作者 肖斌 周芷娟 胡清洁 XIAO Bin;ZHOU Zhijuan;HU Qingjie(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2022年第2期133-137,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11961011,11761014)。
关键词 凸优化 逻辑回归问题 多层优化 邻近拟牛顿算法 非精确 logistic regression problem multi-level algorithm proximal quasi-Newton algorithm inexact
  • 相关文献

参考文献1

二级参考文献14

  • 1Mukhlisin M,El-Shafie A , Taha M R. Regularized versus non-regularizedneural network model for prediction of saturated soil-watercontent on weathered granite soil formation [J]. Neural Computing& Applications,2 0 1 2,21(3) :543 -553.
  • 2Srivastava N, Hinton G, Krizhevsky A , et al. Dropout: A SimpleWay to Prevent Neural Networks from Overfitting [J]. Journal ofMachine Learning Research,2 0 1 4,15(1) :1929 -1958.
  • 3Krizhevsky A , Sutskever I , Hinton G E , et al. ImageNet Classificationwith Deep Convolutional Neural Networks [C]. Advances inNeural Information Processing Systems,2012.
  • 4Baldi P , Sadowski P. The Dropout Learning Algorithm[J]. ArtificialIntelligence,2 0 1 4,210(3) :78 -122.
  • 5Wan L, Zeiler M, Zhang S, et al. Regularization of Neural Networksusing Drop Connect [C]. Proceedings of International Conferenceon Machine Learning,2013.
  • 6Alexandras Iosifidis, Anastasios Tefas, Ioannis Pitas. DropELM:Fast neural network regularization with Dropout and DropConnect[J]. Neurocomputing,2015(162) :57 - 6 6.
  • 7Hosmer D W , Lemeshow S, Sturdivant R X. Applied logistic regression[M] . Wiley,2000 : 85.
  • 8Srin : vasan Y, Bhatia H ,Ong S H. Detection using a neural network[J]. Pattern Recognition,1 9 9 4 ( 2 7 ): 1653 -1662.
  • 9Li G, Zheng Y , Wang J. A one-layer recurrent neural network forconstrained nonconvex optimization[J] . Neural Networks the OfficialJournal of the International Neural Network Society,2015,6 1 ( 2 ) :1 0 - 2 1 .
  • 10王恺,杨巨峰,王立,史广顺,王庆人.人工神经网络泛化问题研究综述[J].计算机应用研究,2008,25(12):3525-3530. 被引量:22

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部