期刊文献+

基于卷积神经网络的黄瓜病害识别研究 被引量:4

Research on Cucumber Disease Recognition Based on Convolution Neural Network
下载PDF
导出
摘要 针对在黄瓜种植过程中,不能及时观察出病害种类以及不合理地使用药物防治而导致减产或死亡的问题,提出了基于卷积神经网络的黄瓜病害识别方法。通过使用手机拍照的方法采集带有病害特征的样本图片,进行图像增强处理,制作了黄瓜叶面病害数据集,并研究AlexNet、VGG-16和ResNet50三种不同深度网络模型的病害识别效果,通过设计不同方案进行模型训练,找出训练效果最优的网络模型并进行病害图片检测。结果表明,系统能够满足预期的黄瓜病害识别要求,具有较高的识别准确率。 In order to solve the problem that the variety of cucumber diseases can not be observed in time and the irrational use of drugs leads to the reduction of production or death,a cucumber disease identification method based on convolutional neural network is proposed.Sample pictures with disease characteristics were collected by taking pictures with mobile phones,and then image enhancement was carried out to make cucumber leaf disease data sets.The disease recognition effects of three different depth network models,AlexNet,VGG-16 and ResNet50,were studied.By designing different schemes for model training,the network model with the best training effect was found and the disease pictures were detected.The results showed that the system could meet the expected requirements of cucumber disease recognition and had high recognition accuracy.
作者 蒋力顺 董志学 胡潇 刘志强 JIANG Li-shun;DONG Zhi-xue;HU Xiao;LIU Zhi-qiang(College of Information Engineering,Inner Mongolia University of Technology,Hohhot,Inner Mongolia 010080,China)
出处 《计算技术与自动化》 2022年第2期153-157,共5页 Computing Technology and Automation
基金 国家自然科学基金资助项目(61962044) 内蒙古自治区科技创新引导奖励资金资助项目(2016001)。
关键词 卷积神经网络 黄瓜病害 迁移学习 病害识别 convolution neural network cucumber diseases transfer learning disease identification
  • 相关文献

参考文献6

二级参考文献106

  • 1姜天戟,袁曾任.新激活函数下前馈型神经网络及其在天气预报中的应用[J].信息与控制,1995,24(1):47-51. 被引量:12
  • 2郑南宁,计算机视觉和模式识别,1998年,143页
  • 3荆仁杰,计算机图像处理,1988年,234页
  • 4Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 5Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 6Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 7Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 8Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 9Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 10Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].

共引文献595

同被引文献36

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部