期刊文献+

重采样和天牛须协同演化粒子群的WSN覆盖控制算法 被引量:2

Particle swarm optimization based on co-evolution of resampling and beetle antennae search for coverage control in WSN
下载PDF
导出
摘要 为了最大程度提升无线传感器网络(WSN)的覆盖范围并降低能耗,延长网络生命周期,提出了基于重采样技术和天牛须搜索的协同演化粒子群优化(RBASPSO)算法来优化WSN的覆盖控制问题。重采样技术平衡了粒子群算法的全局搜索能力和收敛速度,增加了粒子群整体多样性,防止算法过早收敛,加强粒子在搜索过程中跳出低质量谷底的能力;天牛须搜索依靠个体的两个触角搜索其邻域,增强了粒子群中单个粒子的搜索能力。RBASPSO算法采用覆盖率和节点休眠率的加权作为优化WSN覆盖控制的目标函数,通过重采样技术和天牛须搜索的协同演化,既加强了单个粒子的搜索能力,又确保粒子群的多样性及活跃性,提升WSN覆盖性能。实验结果表明,RBASPSO算法不仅能有效处理复杂多峰问题;而且可以有效提高WSN网络覆盖率,延长网络生命周期。 In order to maximize the coverage ratio of Wireless Sensor Networks(WSN),reduce energy consumption,and extend the network life,a Particle Swarm Optimization algorithm(PSO)based on co-evolution of resampling technology and Beetle Antennae Search(BAS)is proposed to optimize the coverage control problem of WSNs.The resampling technology balances the global search capability and convergence speed of PSO,increases the overall diversity of the particle swarm,prevents early convergence,and strengthens the ability of particles to jump out of low quality bottom.BAS can search its neighborhood by relying on two tentacles of an individual,which enhances the search ability of each single particle.Based on the weighting objective function of coverage ratio and sensor sleep rate,the proposed algorithm not only strengthens the search ability of individual particles,but also ensures the diversity and activity of particle swarm to improve WSN network coverage performance.Experimental results show that our proposed algorithm can effectively deal with complex multi-peak problem,improve network coverage,and extend the network life cycle.
作者 王明华 姜开武 邓贤君 WANG Minghua;JIANG Kaiwu;DENG Xianjun(Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture,University of South China,Hengyang 421001,P.R.China;School of Cyber Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,P.R.China;Cooperative Innovation Center for Nuclear,Fuel Cycle Technology and Equipment,University of South China,Hengyang 421001,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第3期553-564,共12页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61971215,61871209) 湖南省自然科学基金(2020JJ4526) 湖南省教育厅科学研究重点项目(21A0276) 超高速微/纳米技术和先进激光制造重点实验室资助项目(2018TP1041) 南华大学核燃料循环技术与装备湖南省协同创新中心开放基金(2019KFZ12) 湖南省研究生科研创新项目资助(CX20200933)。
关键词 无线传感器网络 覆盖控制 粒子群算法 重采样技术 天牛须搜索 协同演化 wireless sensor networks coverage control particle swarm optimization resampling beetle antennae search co-evolution
  • 相关文献

参考文献1

二级参考文献18

  • 1王雪,王晟,马俊杰.无线传感网络布局的虚拟力导向微粒群优化策略[J].电子学报,2007,35(11):2038-2042. 被引量:53
  • 2WANG Xue-qing, ZHANG Shu-qin. Research on efficient coverage problem of node in wireless sensor networks [ A]. Proceedings of International Conference on Industrial Mechatronics and Automation [ C ]. Chengdu, China : IEEE, 2009.9 - 13.
  • 3J Li, J Chen, T H Lai. Energy-efficient intrusion detection with a barrier of probabilistic sensors [ A ]. Proceedings of IEEE Infocom [C ]. Orlando : IEEE, 2012,118 - 126.
  • 4M T XIANG, et al. Condition for the coverage and connec- tivity of wireless sensor network[ A ]. Proceedings of Ad- vanced Materials Research[ C ]. Switzerland: TTP, 2012. 2589 - 2592.
  • 5LI Hui, ZHANG Xiao-guang, et al. A hybrid deployment algorithm based on clonal selection and artificial physics optimization for wireless sensor network [ J ]. Information Technology Journal, 2013,12 ( 5 ) : 917 - 925.
  • 6Shen,et al. Grid scan:a simple and effective approach for coverage issue in wireless sensor networks [ A]. Proceed- ings of IEEE International Conference Communications[ C ]. Istanhul : IEEE, 2006. 3480 - 3484.
  • 7M HEFEEDA, H AHMADI. Energy-efficient protocol for deterministic and probabilistic coverage in sensor networks [J ]. IEEE Transactions on Parallel and Distributed Sys- tems,2010,21 ( 5 ) : 579 - 593.
  • 8KUMLACHEW M W, GARY G Y. Vaccine-enhanced arti- ficial immune system for multimodal function optimization [J]. IEEE Transactions on System, Man, and Cybernetics- Part B : Cybernetics, 2010,40 ( 1 ) : 218 - 228.
  • 9Y YOON, Y H KIM. An efficient genetic algorithm for maximum coverage deployment in wireless sensor net- works[ J]. IEEE Transactions on Cybernetics, 2013,43 (5) :2168 - 2267.
  • 10Hu X M, Zhang J, et al. Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks [ J]. IEEE Trans Evol Comput, 2010,14(5) :766 -781.

共引文献25

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部