期刊文献+

基于稀疏度自适应的压缩感知重构算法研究

Research on compressed sensing reconstruction algorithm based on sparsity adaptation
下载PDF
导出
摘要 为了解决在信号和图像重构中前向搜索正交匹配追踪算法需要在稀疏度已知的条件下进行重构,且重构精度不足的问题,提出了一种稀疏度自适应的回溯前向搜索正交匹配追踪算法。在稀疏度未知的情况下,引入了回溯策略来筛选原子,然后通过前向预测策略筛选出残差最小的原子加入支撑集进行迭代,并自适应更新步长,加快了算法收敛速度,提高了信息重构的精度。通过仿真实验发现,与同类算法相比,该算法信号重建噪声比、精确重建率、相对误差性能在一维点目标仿真和二维图像仿真方面均优于同类算法,证实了方法的有效性。 In order to solve the forward search orthogonal matching pursuit algorithm in signal and image reconstruction,it is necessary to reconstruct under the condition of known sparsity.And the reconstruction accuracy is insufficient.In this paper,a sparsity adaptive backtracking forward search orthogonal matching pursuit algorithm is proposed.The algorithm is in the case of unknown sparsity,introduce a backtracking strategy in the atom-screening process.Then the forward prediction strategy is used to select the atom with the smallest residual and add it to the support set for iteration and adaptive update step size.Through these,the convergence speed of the algorithm is accelerated,and the accuracy of information reconstruction is improved.Simulation experiments have found that compared to the same algorithm,the proposed algorithm outperforms the signal reconstruction noise ratio,exact reconstruction rate,and relative error performance in 1-D point target simulation and 2-D image simulation.Therefore,the effectiveness of this method has been verified.
作者 吕冠男 刘海鹏 王蒙 卢建宏 LYU Guan-nan;LIU Hai-peng;WANG Meng;LU Jian-hong(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《陕西理工大学学报(自然科学版)》 2022年第3期15-21,共7页 Journal of Shaanxi University of Technology:Natural Science Edition
基金 国家自然科学基金项目(62062048)。
关键词 压缩感知 稀疏度自适应 回溯策略 前向搜索正交匹配追踪算法 compressed sensing sparsity adaptive backtracking strategy look ahead orthogonal matching pursuit algorithm
  • 相关文献

参考文献6

二级参考文献157

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2范虹,孟庆丰,张优云,冯武卫,高强.基于改进匹配追踪算法的特征提取及其应用[J].机械工程学报,2007,43(7):115-119. 被引量:14
  • 3Donoho D L. Compressed sensing [ J]. IEEE Transactions on Information Theory,2006,52(4) :1289-1306.
  • 4Candes E J, Wakin M B. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine,2008,25 (2) :21-30.
  • 5Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems [J].Proceedings of the IEEE,2010,98 (6) :948-958.
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposi- tion by basis pursuit [ J ]. SIAM Journal on Scientific Computing, 1999,20( 1 ) :33-61.
  • 7He Z S,Cichocki A. Improved FOCUSS method with con- jugate gradient iterations [ J]. IEEE Transactions on Sig- nal Processing,2009,57 ( 1 ) :399-404.
  • 8Mallat S G, Zhang Z F. Matching pursuits with time-fre- quency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.
  • 9Tropp J A, Gilbert A C. Signal recovery from random mea- surements via orthogonal matching pursuit [ J]. IEEE Tran-sactions on Information Theory,2007,53 (12) :4655-4666.
  • 10Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise [ J ]. IEEE Transactions on In- formation Theory ,2011,57 ( 7 ) :4680-4688.

共引文献338

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部