期刊文献+

基于Cheng-范数的不同维度样本相似性度量

Similarity measurement of samples with different dimensions based on Cheng-norm
下载PDF
导出
摘要 样本相似性度量在机器学习,尤其在聚类任务中起着至关重要的作用,而且许多实际问题涉及的样本,如基因、蛋白质、药物等通常具有不同维度。因此,如何度量不同维度样本相似性显得尤为重要。鉴于大多数现有相似性度量方法仅适用于相同维度样本,基于Cheng-范数,提出一种不同维度样本相似性度量新方法,并以该方法分别基于蛋白质加权图对应的加权邻接矩阵和加权拉普拉斯矩阵测量的相似性,采用层次聚类算法对蛋白质样本进行功能聚类,取得了预期的聚类结果,从而充分验证了该相似性度量方法的有效性。 Similarity measurement of samples plays an important role in machine learning,especially in clustering,tasks,and the samples involved in many practical problems,such as genes,proteins,drugs,etc.usually have different dimensions.Therefore,how to measure the similarity of samples with different dimensions becomes particularly important.Considering that the majority of existing similarity measurement methods are only suitable for samples with the same dimension,based on Cheng-norm,a new method for similarity measurement of samples with different dimensions is introduced.With the similarity measured by this method based on weighted adjacency matrices and weighted Laplacian matrices corresponding to protein weighted graphs,a clustering of protein functions is conducted performed by hierarchical clustering algorithm,which shows expected clustering results and fully verifying the effectiveness of this similarity measurement method.
作者 郭志伟 陈新庄 GUO Zhiwei;CHEN Xinzhuang(College of Mathematics and Computer Science,Yan’an University,Yan’an 716000,China)
出处 《延安大学学报(自然科学版)》 2022年第2期29-35,共7页 Journal of Yan'an University:Natural Science Edition
基金 国家自然科学基金项目(62041212) 陕西省自然科学基础研究计划项目(2020JM-548) 延安大学博士科研启动项目(YDBK2021-03)。
关键词 Cheng-范数 不同维度样本 相似性 机器学习 层次聚类算法 Cheng-norm samples with different dimensions similarity machine learning hierarchical clustering algorithm
  • 相关文献

参考文献3

二级参考文献38

  • 1刘青,杨小涛.基于支持向量机的微阵列基因表达数据分析方法[J].小型微型计算机系统,2005,26(3):363-366. 被引量:8
  • 2Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999, 1473(1): 4–8.
  • 3Geoghegan K F, Song X, Hoth L R, et al. Unexpected mucin-type O-glycosylation and host-specific N-glycosylation of human recombinant interleukin-17A expressed in a human kidney cell line. Protein Expression and Purification,2013, 87(1): 27–34.
  • 4Gill D J, Chia J, Senewiratne J, et al. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. The Journal of Cell Biology,2010, 189(5): 843–858.
  • 5Katrine T B G S, Clausen H. Site-specific protein O-glycosylation modulates proprotein processing-deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochimica et Biophysica Acta (BBA)-General Subjects,2012, 1820(12): 2079–2094.
  • 6Blom N, Sicheritz-Pontén T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics,2004, 4(6): 1633–1649.
  • 7Hart G W. Glycosylation. Current Opinion in Cell Biology,1992, 4(6): 1017–1023.
  • 8Wilson I B, Gavel Y, Von Heijne G. Amino acid distributions around O-linked glycosylation sites. Biochem. J,1991, 275(2): 529–534.
  • 9Christlet T H T, Veluraja K. Database analysis of O-glycosylation sites in proteins. Biophysical Journal,2001, 80(2): 952–960.
  • 10Julenius K, M?lgaard A, Gupta R, et al. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology,2005, 15(2): 153–164.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部