期刊文献+

离散时间区间Ⅱ型模糊双线性系统的事件驱动控制 被引量:1

Event-triggered control for discrete-time interval type Ⅱ fuzzy bilinear systems
下载PDF
导出
摘要 针对一类带有不确定参数的复杂非线性系统,利用离散时间区间Ⅱ型模糊双线性系统进行建模。首先,采用离散事件驱动控制,设计新颖的区间Ⅱ型模糊状态反馈控制器,利用输入滞后方法,闭环系统可转化为新的事件驱动区间Ⅱ型模糊双线性时滞系统;其次,基于李雅普诺夫稳定性理论,并运用先进的矩阵不等式方法,得到闭环系统渐近稳定的充分条件和控制器的设计方法,利用序列线性规划矩阵方法(SLPMM)可求解非线性最小化问题;最后,通过数值例子验证所得结论的有效性。 This paper is concerned with the design of event-triggered bilinear controller for a class of complex nonlinear system with uncertain parameters.The nonlinear systems are modeled by interval type Ⅱ fuzzy bilinear systems.By adopting the idea of input delay method,a novel state-feedback controller is proposed.The closed-loop system is reformulated as a new event-triggered interval type Ⅱ fuzzy singular system.Based on LyapunovKrasovskii functional and some techniques on matrix inequalities,a method of event-triggered state-feedback controller design is developed for the closed-loop systems that are asymptotically stable.An iterative algorithm employing SLPMM is used to solve the nonlinear matrix inequalities.An illustrative example is provided to demonstrate the effectiveness of the results.
作者 刘治沼 李琳 乔田田 李江荣 何远洋 LIU Zhizhao;LI Lin;QIAO Tiantian;LI Jiangrong;HE Yuanyang(College of Mathematics,Northwest University,Xi’an 710127;College of Mathematics and Computer Science,Yan’an University,Yan’an 716000,China)
出处 《延安大学学报(自然科学版)》 2022年第2期58-64,共7页 Journal of Yan'an University:Natural Science Edition
基金 国家自然科学基金项目(61763045) 陕西省自然科学基础研究计划项目(2020JM-552) 延安大学大学生创新创业训练计划项目(D2019133) 延安大学研究生教育创新计划项目(YCX2020103,YCX2020098)。
关键词 区间Ⅱ型模糊系统 双线性系统 事件驱动控制 状态反馈控制器 interval typeⅡfuzzy systems bilinear system event-triggered control state-feedback controller
  • 相关文献

参考文献2

二级参考文献28

  • 1Ghaoui L E,Oustry F,Rami M A.A cone complementarily linearization algorithm for static output-feedback and related problems[J].IEEE Trans.on Automation Control,1997,42(8):1171-1176.
  • 2Zhang H B,Li C G,Liao X F.Stability analysis and H∞ controller design of fuzzy large scale systems based on piecewise Lyapunov functions[J].IEEE Trans.on System,Man,and Cybernetics B:Cybernetics,2006,36(3):685-698.
  • 3Zhang H B,Feng G.Stability analysis and H∞ controller design of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions[J].IEEE Trans.on System,Man,and Cybernetics B:Cybernetics,2008,38(5):1390-1401.
  • 4Hsiao F H,Hwang J D.Stability analysis of fuzzy large-scale systems[J].IEEE Trans.on System,Man,and Cybernetics B:Cybernetics,2002,32(1):122-126.
  • 5Wang W,Luoh L.Stability and stabilization of fuzzy large-scale systems fuzzy systems[J].IEEE Trans.on Fuzzy Systems,2004,12(3):309-315.
  • 6Chen C W,Chiang W L,Hsiao F H.Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems[J].Mathematics and Computers in Simulation,2004,66(6):523-537.
  • 7Hsiao F H,Hwang J D,Chen C W,et al.Robust stabilization of nonlinear multiple time delay large-scale systems via decentralized fuzzy control[J].IEEE Trans.on Fuzzy Systems,2005,13(1):152-163.
  • 8Wang W J,Lin W W.Decentralized PDC for large-scale T-S fuzzy system[J].IEEE Trans.on Fuzzy Systems,2005,13(6):779-786.
  • 9Tseng C S.A novel approach to H∞ decentralized fuzzy-observer-based fuzzy control design for nonlinear interconnected systems[J].IEEE Trans.on Fuzzy Systems,2008,16(5):1337-1350.
  • 10Zhang H B,Dang C Y.Piecewise H∞ controller design of uncertain discrete time fuzzy systems with time delays[J].IEEE Trans.on Fuzzy Systems,2008,16(6):1649-1655.

共引文献1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部