摘要
在期权定价理论中 ,美氏卖权定价问题是相当重要又是相当复杂的 ,迄今还未找到恰当的美氏卖权连续时间定价模型和紧凑的定价公式。笔者在Black、scholes、Parkinson、Brennan、Schwartz、Rendleman、Bartter、Cox、Ross和Rubinstein等人研究工作的基础上 ,利用极限思想和二项式方法构建和实现了美氏卖权定价的通用逐次逼近算法 ,并借助计算机编程对该算法的合理性、收敛性和有效性进行了验证。结果表明 ,该算法能够较好地解决美氏卖权定价问题。
The American put valuation problem is very important and complicated in the Option Pricing Theory (OPT), and so far the appropriate continuous-time pricing model and compact valuation formula for the American put option have not been found. On the basis of the research works of many scholars such as Black, scholes, Parkinson, Brennan, Schwartz, Rendleman, Bartter, Cox, Ross and Rubinstein etc., making use of the notion of limitation and the binomial approach, this paper constructs and realizes gradually approaching algorithm of pricing American put options. Its reasonability, convergence and validity are tested by computer programming. The results show that this algorithm can effectively resolve the American put valuation problem.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2002年第11期42-44,54,共4页
Journal of Chongqing University