期刊文献+

运动参数辅助的无人机单站机会信号定位方法

Research on the drones single station opportunistic signal positioning method aided by motion parameters
下载PDF
导出
摘要 当前,无人机的位置估计严重依赖于卫星导航系统。针对此问题,提出了一种利用无人机动力学参数辅助的射频机会信号单站定位算法。给出了系统运动状态转移方程和位置估计输出方程建立的详细步骤;推导了无人机位置估计的可观性条件;通过设置可变自适应平滑窗口,达到了运动参数估计和误差抑制的效果,并给出了窗口设置的判决门限;最终依靠运动状态递推和单测距射频信号站,实现了对不同运动状态无人机的位置估计。理论仿真表明,在卫星导航定位系统拒止环境下,利用动力学参数辅助的射频机会信号单站定位算法,能够实现对不同运动状态无人机的鲁棒定位,满足无人机巡航、侦查和投送等常规任务需求;利用超宽带机会信号信标的实际测试,进一步验证了所提方法的精确性和有效性。相较于卫星导航定位系统,所提算法的定位均方根误差约为2.7 m,验证了在拒止环境下无人机利用机会信号实现较高精度定位的可行性,降低了无人机对传统导航定位系统传感器的依赖性。 The current estimation of the position of drones relies heavily on the Global Navigation Satellite System(GNSS).To solve this problem,a Single Station Positioning of Opportunity Signals Aided by Kinetic Parameters(SPoKP)is proposed.This paper gives the detailed steps of establishing the motion state transfer equation and position estimation output equation,deduces the observability condition for drones position estimation,and gives the method for motion parameter estimation and error suppression by setting the variable adaptive smoothing window,with the decision threshold for window setting given.Finally by relying on the recursion of the motion state and a single ranging radio frequency signal station,the estimation of positions of the drones in different motion states is realized.Theoretical simulation shows that in the environment where the navigation satellite system refuses,the single-station positioning algorithm for the radio frequency opportunistic signal assisted by dynamic parameters can achieve robust positioning of drones in different motion states,which can meet routine tasks such as delivery,drones cruise and reconnaissance and that the actual test using the ultra-wideband(UWB)signal beacon further verifies the accuracy and effectiveness of the proposed method.Compared with the navigation satellite system,the positioning root mean square error of the proposed algorithm is only 2.7 m,which verifies the feasibility of drones using opportunistic signals to achieve higher-precision positioning in a denial environment,and reduces the drones’dependence on sensors of traditional navigation and positioning systems.
作者 卞志昂 卢虎 史浩东 BIAN Zhi’ang;LU Hu;SHI Haodong(Information and Navigation School,Air Force Engineering University,Xi’an 710082,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期101-110,共10页 Journal of Xidian University
基金 部级基金(20201A030153) 国家自然科学基金(61473308)。
关键词 无人机 运动参数 机会信号 可观性 单站定位 unmanned aerial vehicle Kinetic parameters signal of opportunity observability single-station positioning
  • 相关文献

参考文献5

二级参考文献37

  • 1李雄,黄建国,张群飞.基于重要性抽样的最大似然方位估计方法[J].电子学报,2005,33(8):1529-1532. 被引量:2
  • 2GREWAL M S,ANDREW A P. Kalman filtering,theory and practice using Matlab[M].New York:John Wiley&Sons,2008.225-289.
  • 3MERWE R V D. Sigma-point Kalman filter for probabilistic inference in dynamic state-space models[D].Portland:Oregon Health & Science University,2004.108-110.
  • 4ARASARATNAM I,HAYKIN S. Cubature Kalman filters[J].{H}IEEE Transactions on Automatic Control,2009,(6):1254-1269.
  • 5HOLMES S A,KLEIN G,MURRAY D W. An O(N2)square root unscented Kalman filter for visual simultaneous localization and mapping[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(7):1251-1263.
  • 6KARLSSON R,SCHON T,GUSTAFSSON F. Complexity analysis of the marginalized particle filter[J].{H}IEEE Transactions on Signal Processing,2005,(11):4408-4411.
  • 7ALI J,MIRZA M. Performance comparison among some nonlinear filters for a low cost SINS/GPS integrated solution[J].{H}NONLINEAR DYNAMICS,2010,(3):491-502.
  • 8LI Y,RIZOS C,WANG J. Sigma-point Kalman filtering for tightly coupled GPS/INS integration[J].Journal of the Institute of Navigation,2008,(3):167-177.
  • 9MCMANUS C,BARFOOT T. A serial approach to handling high-dimensional measurements in the sigmapoint Kalman filter[A].Los Angeles,CA:MIT Press,2011.
  • 10徐田来,崔平远,崔祜涛.路网辅助的车载INS/GPS组合导航方法[J].控制与决策,2009,24(3):398-402. 被引量:3

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部