摘要
滑坡是一种多发于山区的地质灾害,严重威胁隐患点周围群众的生命财产安全,急需针对滑坡建立及时、准确的监测预警系统。该文在已有的滑坡声发射监测技术和变形过程预警模型基础上,对比研究声发射和位移监测参量。基于小波变换和改进切线角方法,建立了基于声发射监测的滑坡过程预警模型。利用英国拉夫堡大学实验室模拟数据,初步验证了所建立的声发射预警模型的可靠性。在广东省连南县特大型滑坡隐患点安装监测设备,获取边坡现场变形监测数据,比较了声发射和位移监测的实际预警效果。结果表明:相较于位移参量,声发射参量在预警稳定性和准确性上均表现更好。
Landslides are common geological disasters that frequently occur in mountainous areas. Landslides can threaten the safety of people around hidden danger points;thus, timely, accurate monitoring and early warning systems are needed for landslides. This study analyzed the acoustic emission signal and displacement monitoring parameters for existing acoustic emission monitoring systems and early warning models of the deformation before a landslide. A landslide early warning model was then developed based on acoustic emission monitoring using wavelet transforms and an improved tangential angle model. The reliability was verified against laboratory simulation data from Loughborough University, UK. Monitoring equipment was then installed at a key point in the very large landslide prone area in Liannan County, Guangdong Province, China. The acoustic emission monitoring parameters and the displacement parameters were then compared with the measured deformation of the slope. The results show that the acoustic emission monitoring parameters are more sensitive and more accurate than the displacement parameters.
作者
陈杨
邓李政
黄丽达
陈涛
陈建国
袁宏永
CHEN Yang;DENG Lizheng;HUANG Lida;CHEN Tao;CHEN Jianguo;YUAN Hongyong(Institute of Public Safety Research,Department of Engineering Physics,Tsinghua University,Beijing 100084,China;Hefei Institute for Public Safety Research,Tsinghua University,Hefei 230601,China;Anhui Province Key Laboratory of Human Safety,Hefei 230601,China)
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第6期1052-1058,共7页
Journal of Tsinghua University(Science and Technology)
基金
安徽省重点研发计划(202104b11020021)
清华大学合肥公共安全研究院开放课题(QHHFYKF202101)
工业和信息化部2021年自然灾害防治技术装备工程化攻关专项(TC210H00L/47)。
关键词
灾害预警模型
滑坡
声发射
振铃计数
小波变换
disaster early warning model
landslide
acoustic emission
ring down count
wavelet transform