期刊文献+

高热流条件过冷沸腾传热系数试验研究及神经网络预测 被引量:4

Experimental Study on Heat Transfer Coefficient for Subcooled Water Flow Boiling under High Heat Fluxes and its Prediction Using Neural Network
原文传递
导出
摘要 过冷沸腾在高热流换热场合应用广泛,如国际热核聚变实验堆(ITER)中的偏滤器,即是依靠过冷水沸腾来冷却10 MW·m^(−2)级的极高热流。基于此背景,本文试验研究了高热流条件下竖直通道内水的过冷沸腾流动传热特性,测试范围:热流密度7.5∼12.5 MW·m^(−2),流速6∼10 m·s^(−1),压力3∼5 MPa。分析了压力、流速、热流密度、过冷度等参数对过冷沸腾传热系数的影响。结果表明,在充分发展过冷沸腾区,传热系数随着压力和热流的增大、过冷度的减小而升高。将试验数据与已有传统的传热关联式进行对比,由于关联式适用范围有限,预测效果普遍不理想。为更准确预测过冷沸腾传热系数,建立了GA-BP神经网络模型,结果显示,该模型预测误差位于±5%范围内,预测性能相较于传统关联式有大幅度提升。 Subcooled flow boiling has been widely applied in high-heat-flux engineering applications,for example,the divertors in the International Thermonuclear Fusion Experimental Reactor(ITER),which are under bear extremely high heat load of 10 MW·m^(−2) level,are designed to be cooled down by subcooled water flow boiling.Therefore,in this study,the heat transfer of subcooled water flowing in vertical tube is experimentally investigated under high heat fluxes conditions.The operating parameters are as follows:heat flux of 7.5~12.5 MW·m^(−2),velocity of 6~10 m·s^(−1),and pressure of 3~5 MPa.The effects of pressure,velocity,heat flux,and fluid subcooling on heat transfer coefficient are discussed.It is found that the heat transfer coefficient increases with increasing pressure,heat flux and decreasing subcooling in the fully developed subcooled boiling region.The experimental data are compared with available heat transfer correlations in the literature,and results show that these correlations cannot well predict our data,which are mainly attributed to limited applications ranges.In order to predict heat transfer coefficient of subcooled boiling more accurately,a GA-BP neural network model is established,and most of data are captured within an error range of±5%.The prediction performance of GA-BP neural network model is greatly improved compared with those of traditional correlations.
作者 颜建国 郑书闽 郭鹏程 YAN Jianguo;ZHENG Shumin;GUO Pengcheng(State Key Laboratory of Eco-hydraulics in Northwest Arid Region,Xi’an University of Technology,Xi’an 710048,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2022年第6期1650-1659,共10页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51909213) 陕西省博士后科研资助项目(No.2018BSHEDZZ61) 清洁能源与生态水利工程研究中心(No.QNZX-2019-05) 新疆水专项(No.2020.C-001) 陕西高校青年科技创新团队(No.2020-29)。
关键词 过冷沸腾传热 传热关联式 GA-BP神经网络 高热流 ITER偏滤器 subcooled boiling heat transfer heat transfer correlation GA-BP neural network high heat flux ITER divertor
  • 相关文献

参考文献7

二级参考文献28

  • 1尹大燕,贾力.脉动热管传热性能的实验研究[J].工业加热,2006,35(6):23-26. 被引量:7
  • 2吕永超,杨双根.电子设备热分析、热设计及热测试技术综述及最新进展[J].电子机械工程,2007,23(1):5-10. 被引量:73
  • 3SPITZER L. The stellarator concept[J]. Physics of Fluids, 1958, 1(4): 253-264.
  • 4PITCHER C S, STANGEBY P C. Experimental divertor physics [J]. Plasma Physics and Con- trolled Fusion, 1997, 39(6) : 779-930.
  • 5RAFFRAY A R, SCHLOSSER J. Critical heat flux analysis and R&D for the design of the ITER divertor[J]. Fusion Engineering and De- sign, 1999, 45(4): 377-407.
  • 6HIRAI T, ESCOURBIAC S. ITER tungsten divertor design development and qualification program[J]. Fusion Engineering and Design, 2013, 88(9-10): 1 798-1 801.
  • 7PARKER R, JANESCHITZ G. Plasma-wall in- teractions in ITER[J]. Journal of Nuclear Mate- rials, 1997, 241(1): 1-26.
  • 8LIPUMA A, RICHOU M. Potential and limits of water cooled divertor concepts based on mono- block design as possible candidates for a DEMO reactor[J]. Fusion Engineering and Design, 2013, 88(9-10): 1 836-1 843.
  • 9YOU J H, BOLT H. Analytical method for thermal stress analysis of plasma facing materials[J]. Journal of Nuclear Materials, 2001, 299 (1) : 9-19.
  • 10BARABASH V. Summary of material properties for structural analysis of the ITER internal com- ponents[R]. [S. 1. ]:Is. n. ], 2009.

共引文献15

同被引文献41

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部