摘要
基于光学微谐振腔的自参考耗散克尔孤子(Dissipative Kerr Solitons,DKSs)有广泛的应用,如频率合成器、相干通信、天文光谱仪校准、精密测量、光学时钟、双梳光谱学等。倍频程DKS已在氮化硅和铌酸锂微谐振腔中实现,笔者提出了一种在氮化铝(AlN)微环谐振腔中通过单一泵浦直接产生倍频程DKS的简单方案。通过将两个谐振频率相近的模式TE_(00)和TE_(10)分别作为泵浦谐振和辅助谐振模式,红失谐侧的辅助模式TE_(10)可以有效地平衡孤子形成过程中的热拖曳效应。慢速扫描泵浦光波长可获得稳定的倍频程展宽的孤子梳,带宽为1100~2300 nm,孤子存在范围最大为10.4 GHz(83 pm)。这是首次在AlN平台上获得倍频程展宽的克尔光孤子。该方案在单一泵浦源下就可以获得稳定的倍频程光孤子以及宽的孤子访问窗口,不同于其他方案需要额外引入复杂的控制手段和设备。
Self-reference Dissipative Kerr Solitons(DKSs)based on optical microring resonators have a wide range of applications,such as frequency synthesizers,coherent communication,astronomical spectrometer calibration,precision measurements,optical clocks,dual-comb spectroscopy,etc.The directly accessing octavespanning DKS has been obtained in silicon nitride and lithium niobate microresonators.Here,a simple method that can directly access the octave-spanning DKS in an aluminum nitride(AlN)microring resonator via a single pump was proposed.The TE_(00)and TE_(10)modes act as the pump resonance and auxiliary resonance modes respectively,which had the resonant frequencies close to each other,and the auxiliary mode on red detuning side could effectively balance the thermal drag effect during the formation of soliton.The pump wavelength was tuned slowly to access a stable soliton comb with a bandwidth of 1100-2300 nm and the maximum soliton existence range of 10.4 GHz(83 pm),which was the first time an octave-spanning Kerr soliton had been obtained on the AlN platform.The stable octave-spanning DKS with large soliton accessing window could be obtained in this scheme using a single pump,which was different from other schemes with additional complex controls means and equipments.
作者
涂慧镧
刘佳
翁海中
张雨丹
戴江南
陆巧银
John F.Donegan
国伟华
Tu Huilan;Liu Jia*;Weng Haizhong;Zhang Yudan;Dai Jiangnan;Lu Qiaoyin;John F.Donegan;Guo Weihua(Wuhan National Laboratory for Optoelectronics&School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China;School of Physics,CRANN and AMBER,Trinity College Dublin,Dublin 2,Ireland)
出处
《红外与激光工程》
EI
CSCD
北大核心
2022年第5期79-85,共7页
Infrared and Laser Engineering
基金
国家自然科学基金(61861136001)
爱尔兰科学基金(17/NSFC/4918)。
关键词
微环谐振腔
四波混频
倍频程光频梳
光孤子
microring resonator
four-wave mixing
octave-spanning optical frequency comb
optical soliton