摘要
分析传统桌面级熔融沉积成型(FDM型)3D打印机喷嘴的结构特点,选择喷嘴流道直径、收缩角与喷嘴温度作为试验变量,进行正交仿真试验。分析喷嘴熔体压力场、速度场、黏度场、温度场以及剪切速率场的分布状态。以稳定的出口截面速度、较低的流道熔体黏度以及较高的出口压力作为提高喷嘴打印精度与确保打印过程顺畅的优化目标。通过极差分析,确定三因素分别作用下每个优化指标的变化规律,并基于遗传算法求解多目标优化问题。结果表明:出口速度方差的最显著影响因素为流道直径,流道熔体黏度与出口压力两指标的最显著影响因素为喷嘴温度;综合考量,喷嘴流道直径为1 mm、收缩角为30°且在200~210℃工作时,能够实现较优指标的聚丙烯熔体打印。
The nozzle structure characteristics of traditional desktop fused deposition molding(FDM)3D printer were analyzed,and the nozzle diameter,shrinkage angle and nozzle temperature were selected as experimental variables to carry out orthogonal simulation experiments.The distribution states of the nozzle melt pressure field,velocity field,viscosity field,temperature field and shear rate field were analyzed.To stabilize the exit velocity,the stable outlet section speed,lower melt viscosity and higher outlet pressure were used as optimization goal to improve nozzle printing accuracy and ensure smooth printing process.Through range analysis,the change rules of each optimization index under three factors were determined,and the multi-objective optimization problem was solved based on the genetic algorithm.The results show that the most significant factor affecting the outlet velocity variance is the channel diameter,and the most significant factor affecting the channel melt viscosity and the outlet pressure is the nozzle temperature;considering comprehensively,by using the nozzle with 1 mm diameter and 30°contraction angle and working at 200~210℃,the better index of polypropylene melt printing can be achieved.
作者
任礼
白海清
鲍骏
贾仕奎
秦望
安熠蔚
REN Li;BAI Haiqing;BAO Jun;JIA Shikui;QIN Wang;AN Yiwei(College of Mechanical Engineering,Shaanxi University of Technology,Hanzhong Shaanxi 723001,China;Shaanxi Key Laboratory of Industrial Automation,Hanzhong Shaanxi 723001,China;College of Materials Science and Engineering,Shaanxi University of Technology,Hanzhong Shaanxi 723001,China)
出处
《机床与液压》
北大核心
2022年第11期154-160,共7页
Machine Tool & Hydraulics
基金
陕西省自然科学基础研究计划项目(2021JM-486)
陕西理工大学研究生创新基金项目(SLGYCX2028)。
关键词
3D打印
喷嘴
仿真分析
遗传算法
多目标优化
3D printing
Nozzle
Simulation analysis
Genetic algorithm
Multi-objective optimization