期刊文献+

基于多级结构的深度子空间聚类方法 被引量:1

Deep Subspace Clustering Method Based on the Multi-level Structure
下载PDF
导出
摘要 提出了一种新的深度子空间聚类方法,使用了卷积自编码器将输入图像转换为位于线性子空间上的表示。通过结合自编码器提取的低阶和高阶信息来促进特征学习过程,在编码器的不同层级生成多组自我表示和信息表示。将得到的多级信息融合得到统一的系数矩阵并用于后续的聚类。通过多组实验验证了上述创新的有效性,在三个经典数据集:Coil20,ORL和Extended Yale B上,聚类精度分别达到95.38%、87.25%以及97.58%。相较于其他主流方法,能有效提高聚类准确性,并具有较强的鲁棒性。 A new deep subspace clustering method that uses a convolutional autoencoder to transform an input image into a representation that lies on a linear subspace is proposed.The feature learning process is facilitated by combining low-order and high-order information extracted by the autoencoders,and multiple sets of self-representations and information representations are generated at different levels of the encoder.The obtained multi-level information is fused to obtain a unified coefficient matrix and use it for subsequent clustering.The effectiveness of the above innovations is verified through multiple experiments on three classic datasets,including Coil20,ORL and Extended Yale B.And the clustering accuracies reach 95.38%,87.25% and 97.58% respectively.Compared with other mainstream methods,this method can effectively improve the clustering accuracy and it has strong robustness.
作者 郁万蓉 YU Wanrong(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi 214122,China)
出处 《现代信息科技》 2022年第6期100-103,共4页 Modern Information Technology
关键词 子空间聚类 多级结构 自编码器 subspace clustering multi-level structure autoencoder
  • 相关文献

参考文献4

二级参考文献24

  • 1姜庆玲,刘万军,张闯.基于CNN的分块自适应彩色图像边缘检测的研究[J].计算机应用研究,2009,26(3):1131-1134. 被引量:3
  • 2孙继平,吴冰,刘晓阳.基于膨胀/腐蚀运算的神经网络图像预处理方法及其应用研究[J].计算机学报,2005,28(6):985-990. 被引量:30
  • 3祖克举,周昌雄,张尤赛.基于各向异性扩散活动轮廓模型的左心室MRI分割[J].计算机测量与控制,2007,15(3):339-341. 被引量:5
  • 4von AGRIS U,ZIEREN J,CANZLER U. Recent developments in visual sign language recognition[J].Universal Access in the Information Society,2008,(04):323-362.
  • 5LADNER R E. Communication technologies for people with sensory disabilities[J].Proceedings of the IEEE,2009,(04):957-973.
  • 6SAXE D M,FOULDS R A. Robust region of interest coding for improved sign language telecommunication[J].IEEE Transactions on Information Technology in Biomedicine,2002,(04):310-316.
  • 7HABILI N,LIM C C,MOINI A. Segmentation of the face and hands in sign language video sequences using color and motion cues[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,(08):1086-1097.
  • 8CHUA L O,YANG L. Cellular neural networks:theory[J].IEEE Transactions on Circuits and Systems,1988,(10):1257-1272.doi:10.1109/31.7600.
  • 9CHUA L O,YANG L. Cellular neural networks:applications[J].IEEE Transactions on Circuits and Systems,1988,(10):1273-1290.doi:10.1109/31.7601.
  • 10KIM H,ROSKA T,CHOU L O. Automatic detection and tracking of moving image target with CNN-UM via target probability fusion of multiple features[J].International Journal of Circuit theory and Applications,2003,(04):329-346.

共引文献12

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部