期刊文献+

基于信息融合和GA-BP的煤矿瓦斯浓度预测方法研究 被引量:7

Research on Coal Mine Gas Concentration Prediction Method Based on Information Fusion and GA-BP
下载PDF
导出
摘要 瓦斯浓度是煤矿安全生产的重要指标,采用合理的模型预测瓦斯浓度可提前采取安全保障措施。将CO浓度、温度、风速和甲烷浓度作为监测数据,设计传感器布局方案,以GA算法优化BP神经网络模型的权值和阈值,提高瓦斯浓度预测模型的准确率。以采样数据的后10组为测试数据,试验结果显示,GA-BP神经网络的预测误差低于5%,可满足使用需求。 Gas concentration is an important indicator of coal mine safety production. Using a reasonable model to predict gas concentration can take safety measures in advance. CO concentration, temperature,wind speed and methane concentration are used as monitoring data, the sensor layout scheme is designed, and the GA algorithm is used to optimize the weights and thresholds of the BP neural network model to improve the accuracy of the gas concentration prediction model. Taking the last 10groups of sampled data as test data, the test results show that the prediction error of the GA-BP neural network is less than 5%, which can meet the needs of use.
作者 戚昱 QI Yu(School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《煤炭技术》 CAS 北大核心 2022年第6期159-161,共3页 Coal Technology
关键词 瓦斯浓度预测 信息融合 GA-BP 适应度 gas concentration prediction information fusion GA-BP fitness
  • 相关文献

参考文献3

二级参考文献25

共引文献37

同被引文献55

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部