期刊文献+

基于学习优化的智能电网能量管理研究综述 被引量:7

Learning-to-optimize based energy management in smart grid:A survey
原文传递
导出
摘要 受近年来人工智能浪潮的积极影响,基于学习优化的智能电网能量管理研究不断涌现,并被视为一个富有前景的研究方向.现有学习优化方法的设计思路大相径庭,了解这些思路的优势和局限性对掌握该交叉领域动态和推动其长足发展至关重要.鉴于此,总结3种主要的学习优化类型:学习最优解、学习热启动、学习约束,分析不同学习优化类型的设计思路和优点,基于现有工作的缺憾进一步提出5大挑战,并提供一些潜在的解决方案,以期为该交叉领域的研究者提供更全面的信息和新的视角. With dramatic development of artificial intelligence in recent years,energy management based on“learning to optimize”is regarded as a promising research direction of smart grid.The designs of existing learning-based energy management approaches are quite different and there is no doubt that understanding the advantages and limitations of these ideas is essential to capture the research trends in this field.In this survey,references are carefully selected and categorized into three main groups:Optimal solution learning,warm-start learning,and constraints learning.The design details and advantages of these groups are systematically analyzed.Further,based on the shortcomings of existing studies,we propose five major challenges and provided some potential solutions.We hope this survey can provide more comprehensive information and new perspectives for researchers in this field.
作者 郭方洪 徐博文 张文安 邓瑞龙 GUO Fang-hong;XU Bo-weny;ZHANG Wen-an;DENG Rui-long(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China;College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第5期1089-1101,共13页 Control and Decision
基金 国家自然科学基金项目(61903333,62173305,62073285,61130220) 浙江省“钱江人才”特殊急需类项目(QJD1902010) 浙江省自然科学基金项目(LZ21F020006)。
关键词 学习优化 深度学习 神经网络 人工智能 能量管理 learning to optimize deep learning neural network artificial intelligence energy management
  • 相关文献

参考文献4

二级参考文献13

共引文献66

同被引文献81

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部