期刊文献+

求解多目标不相关并行机调度问题的多群体人工蜂群算法 被引量:8

Multi-colony artificial bee colony algorithm for multi-objective unrelated parallel machine scheduling problem
原文传递
导出
摘要 针对具有预防性维修(PM)和顺序相关准备时间(SDST)的不相关并行机调度问题,提出一种多群体人工蜂群算法(MABC)以同时最小化完工时间和总延迟时间.该算法将雇佣蜂分割成s个雇佣蜂群,除最差雇佣蜂群外,每个雇佣蜂群都对应1个跟随蜂群.结合2个目标函数、PM和SDST的特征设计3种邻域搜索,采用全局搜索和邻域搜索的不同组合实现雇佣蜂阶段和跟随蜂阶段,并引入两种淘汰过程.通过大量实验测试MABC新策略和搜索性能,计算结果验证了新策略的有效性和MABC的搜索优势. To solve the unrelated parallel machine scheduling problem(UPMSP)with preventive maintenance(PM)and sequence dependent setup time(SDST),a multi-colony artificial bee colony(MABC)algorithm is proposed to minimize makespan and total tardiness simultaneously.In this algorithm,employed bees are divided into s colonies.Except for the worst employed bee colony,each employed bee colony corresponds to a onlooker bee colony.Combined with the characteristics of two objective functions,PM and SDST,three kinds of neighborhood searches are designed.Different combinations of global search and neighborhood search are used to implement the employed bee phase and the onlooker bee phase,and two elimination processes are applied.Experimental research on the strategy and search performance of the MABC is carried out,and computational results demonstrate the effectiveness of the proposed strategy and the search advantage of the MABC.
作者 雷德明 杨海 LEI De-ming;YANG Hai(College of Automation,Wuhan University of Technology,Wuhan 430070,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第5期1174-1182,共9页 Control and Decision
基金 国家自然科学基金项目(61573264)。
关键词 预防性维修 顺序相关准备时间 不相关并行机调度 人工蜂群算法 preventive maintenance sequence dependent setup time unrelated parallel machine scheduling artificial bee colony algorithm
  • 相关文献

参考文献7

二级参考文献80

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:199
  • 2崔建双,李铁克,张文新.混合流水车间调度模型及其遗传算法[J].北京科技大学学报,2005,27(5):623-626. 被引量:29
  • 3轩华,唐立新.实时无等待HFS调度的一种拉格朗日松弛算法[J].控制与决策,2006,21(4):376-380. 被引量:25
  • 4高家全,方蕾.解非等同并行多机调度问题的并行遗传算法[J].计算机工程,2007,33(1):198-199. 被引量:8
  • 5KARABOGA D, BASTURK B. Artificial bee colony(ABC) optimization algorithm for solving constrained optimization problems[C] IILNCS: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing. Berlin: Springer-Verlag, 2007, 4529:789 - 798.
  • 6KARABOGA D, AKAY B B. Artificial bee colony algorithm on training artificial neural networks[C]//2007 IEEE 15th Signal Processing and Communications Applications Conference. New York: IEEE, 2007:818 - 821.
  • 7KARABOGA D, AKAY B B, OZTURK C. Artificial bee colony(ABC) optimization algorithm for training feed-forward neural networks[C] IILNCS: Modeling Decisions for Artificial Intelligence. Berlin: Springer-Verlag, 2007, 4617:318 -319.
  • 8KARABOGA N. A new design method based on artificial bee colony algorithrn for digital IIR filters[J]. Journal of the Franklin Institute, 2009, 346(4): 328 - 348.
  • 9SRINIVASA RAO R, NARASIMHAM S V L, RAMALINGARAJU M. Optimization of distribution network configuration for loss reduc- tion using artificial bee colony algorithm[J]. International Journal of Electrical Power and Energy Systems Engineering, 2008, 1(2): 709 - 715.
  • 10SINGH A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem[J]. Applied Soft Computing, 2009, 9(2): 625 - 631.

共引文献183

同被引文献64

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部